direct product, p-group, abelian, monomial
Aliases: C4×C8, SmallGroup(32,3)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C4×C8 |
C1 — C4×C8 |
C1 — C4×C8 |
Generators and relations for C4×C8
G = < a,b | a4=b8=1, ab=ba >
(1 21 31 14)(2 22 32 15)(3 23 25 16)(4 24 26 9)(5 17 27 10)(6 18 28 11)(7 19 29 12)(8 20 30 13)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
G:=sub<Sym(32)| (1,21,31,14)(2,22,32,15)(3,23,25,16)(4,24,26,9)(5,17,27,10)(6,18,28,11)(7,19,29,12)(8,20,30,13), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)>;
G:=Group( (1,21,31,14)(2,22,32,15)(3,23,25,16)(4,24,26,9)(5,17,27,10)(6,18,28,11)(7,19,29,12)(8,20,30,13), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32) );
G=PermutationGroup([[(1,21,31,14),(2,22,32,15),(3,23,25,16),(4,24,26,9),(5,17,27,10),(6,18,28,11),(7,19,29,12),(8,20,30,13)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)]])
C4×C8 is a maximal subgroup of
C8⋊C8 D4⋊C8 Q8⋊C8 C8⋊2C8 C8⋊1C8 C16⋊5C4 C4⋊C16 C8.C8 C8○2M4(2) C42.12C4 C42.7C22 C8⋊6D4 C8○D8 C8⋊4Q8 C4.4D8 C4.SD16 C42.78C22 C8⋊5D4 C8⋊4D4 C4⋊Q16 C8.12D4 C8⋊3Q8 C8.5Q8 C8⋊2Q8
C4×C8 is a maximal quotient of
C8⋊C8 C22.7C42 C16⋊5C4
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 4A | ··· | 4L | 8A | ··· | 8P |
order | 1 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | 1 | 1 | 1 | ··· | 1 | 1 | ··· | 1 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 |
type | + | + | + | |||
image | C1 | C2 | C2 | C4 | C4 | C8 |
kernel | C4×C8 | C42 | C2×C8 | C8 | C2×C4 | C4 |
# reps | 1 | 1 | 2 | 8 | 4 | 16 |
Matrix representation of C4×C8 ►in GL2(𝔽17) generated by
4 | 0 |
0 | 4 |
2 | 0 |
0 | 4 |
G:=sub<GL(2,GF(17))| [4,0,0,4],[2,0,0,4] >;
C4×C8 in GAP, Magma, Sage, TeX
C_4\times C_8
% in TeX
G:=Group("C4xC8");
// GroupNames label
G:=SmallGroup(32,3);
// by ID
G=gap.SmallGroup(32,3);
# by ID
G:=PCGroup([5,-2,2,-2,2,-2,20,46,72]);
// Polycyclic
G:=Group<a,b|a^4=b^8=1,a*b=b*a>;
// generators/relations
Export