Extensions 1→N→G→Q→1 with N=C2xD8 and Q=C14

Direct product G=NxQ with N=C2xD8 and Q=C14
dρLabelID
D8xC2xC14224D8xC2xC14448,1352

Semidirect products G=N:Q with N=C2xD8 and Q=C14
extensionφ:Q→Out NdρLabelID
(C2xD8):1C14 = C7xC22:D8φ: C14/C7C2 ⊆ Out C2xD8112(C2xD8):1C14448,855
(C2xD8):2C14 = C7xD4:D4φ: C14/C7C2 ⊆ Out C2xD8224(C2xD8):2C14448,857
(C2xD8):3C14 = C7xC4:D8φ: C14/C7C2 ⊆ Out C2xD8224(C2xD8):3C14448,867
(C2xD8):4C14 = C7xC8:7D4φ: C14/C7C2 ⊆ Out C2xD8224(C2xD8):4C14448,874
(C2xD8):5C14 = C7xC8:4D4φ: C14/C7C2 ⊆ Out C2xD8224(C2xD8):5C14448,901
(C2xD8):6C14 = C14xD16φ: C14/C7C2 ⊆ Out C2xD8224(C2xD8):6C14448,913
(C2xD8):7C14 = C7xC8:2D4φ: C14/C7C2 ⊆ Out C2xD8224(C2xD8):7C14448,877
(C2xD8):8C14 = C7xD4.4D4φ: C14/C7C2 ⊆ Out C2xD81124(C2xD8):8C14448,880
(C2xD8):9C14 = C7xC8:3D4φ: C14/C7C2 ⊆ Out C2xD8224(C2xD8):9C14448,904
(C2xD8):10C14 = C7xC16:C22φ: C14/C7C2 ⊆ Out C2xD81124(C2xD8):10C14448,917
(C2xD8):11C14 = C14xC8:C22φ: C14/C7C2 ⊆ Out C2xD8112(C2xD8):11C14448,1356
(C2xD8):12C14 = C7xD4oD8φ: C14/C7C2 ⊆ Out C2xD81124(C2xD8):12C14448,1359
(C2xD8):13C14 = C14xC4oD8φ: trivial image224(C2xD8):13C14448,1355

Non-split extensions G=N.Q with N=C2xD8 and Q=C14
extensionφ:Q→Out NdρLabelID
(C2xD8).1C14 = C7xC2.D16φ: C14/C7C2 ⊆ Out C2xD8224(C2xD8).1C14448,161
(C2xD8).2C14 = C7xD4.2D4φ: C14/C7C2 ⊆ Out C2xD8224(C2xD8).2C14448,871
(C2xD8).3C14 = C7xC8.12D4φ: C14/C7C2 ⊆ Out C2xD8224(C2xD8).3C14448,903
(C2xD8).4C14 = C14xSD32φ: C14/C7C2 ⊆ Out C2xD8224(C2xD8).4C14448,914
(C2xD8).5C14 = C7xM5(2):C2φ: C14/C7C2 ⊆ Out C2xD81124(C2xD8).5C14448,165
(C2xD8).6C14 = C7xD8:C4φ: C14/C7C2 ⊆ Out C2xD8224(C2xD8).6C14448,850
(C2xD8).7C14 = D8xC28φ: trivial image224(C2xD8).7C14448,845

׿
x
:
Z
F
o
wr
Q
<