# Extensions 1→N→G→Q→1 with N=C2×D8 and Q=C14

Direct product G=N×Q with N=C2×D8 and Q=C14
dρLabelID
D8×C2×C14224D8xC2xC14448,1352

Semidirect products G=N:Q with N=C2×D8 and Q=C14
extensionφ:Q→Out NdρLabelID
(C2×D8)⋊1C14 = C7×C22⋊D8φ: C14/C7C2 ⊆ Out C2×D8112(C2xD8):1C14448,855
(C2×D8)⋊2C14 = C7×D4⋊D4φ: C14/C7C2 ⊆ Out C2×D8224(C2xD8):2C14448,857
(C2×D8)⋊3C14 = C7×C4⋊D8φ: C14/C7C2 ⊆ Out C2×D8224(C2xD8):3C14448,867
(C2×D8)⋊4C14 = C7×C87D4φ: C14/C7C2 ⊆ Out C2×D8224(C2xD8):4C14448,874
(C2×D8)⋊5C14 = C7×C84D4φ: C14/C7C2 ⊆ Out C2×D8224(C2xD8):5C14448,901
(C2×D8)⋊6C14 = C14×D16φ: C14/C7C2 ⊆ Out C2×D8224(C2xD8):6C14448,913
(C2×D8)⋊7C14 = C7×C82D4φ: C14/C7C2 ⊆ Out C2×D8224(C2xD8):7C14448,877
(C2×D8)⋊8C14 = C7×D4.4D4φ: C14/C7C2 ⊆ Out C2×D81124(C2xD8):8C14448,880
(C2×D8)⋊9C14 = C7×C83D4φ: C14/C7C2 ⊆ Out C2×D8224(C2xD8):9C14448,904
(C2×D8)⋊10C14 = C7×C16⋊C22φ: C14/C7C2 ⊆ Out C2×D81124(C2xD8):10C14448,917
(C2×D8)⋊11C14 = C14×C8⋊C22φ: C14/C7C2 ⊆ Out C2×D8112(C2xD8):11C14448,1356
(C2×D8)⋊12C14 = C7×D4○D8φ: C14/C7C2 ⊆ Out C2×D81124(C2xD8):12C14448,1359
(C2×D8)⋊13C14 = C14×C4○D8φ: trivial image224(C2xD8):13C14448,1355

Non-split extensions G=N.Q with N=C2×D8 and Q=C14
extensionφ:Q→Out NdρLabelID
(C2×D8).1C14 = C7×C2.D16φ: C14/C7C2 ⊆ Out C2×D8224(C2xD8).1C14448,161
(C2×D8).2C14 = C7×D4.2D4φ: C14/C7C2 ⊆ Out C2×D8224(C2xD8).2C14448,871
(C2×D8).3C14 = C7×C8.12D4φ: C14/C7C2 ⊆ Out C2×D8224(C2xD8).3C14448,903
(C2×D8).4C14 = C14×SD32φ: C14/C7C2 ⊆ Out C2×D8224(C2xD8).4C14448,914
(C2×D8).5C14 = C7×M5(2)⋊C2φ: C14/C7C2 ⊆ Out C2×D81124(C2xD8).5C14448,165
(C2×D8).6C14 = C7×D8⋊C4φ: C14/C7C2 ⊆ Out C2×D8224(C2xD8).6C14448,850
(C2×D8).7C14 = D8×C28φ: trivial image224(C2xD8).7C14448,845

׿
×
𝔽