Copied to
clipboard

G = C7×M5(2)⋊C2order 448 = 26·7

Direct product of C7 and M5(2)⋊C2

direct product, metabelian, nilpotent (class 4), monomial, 2-elementary

Aliases: C7×M5(2)⋊C2, D8.2C28, C56.96D4, C28.62D8, M5(2)⋊6C14, C8.2(C2×C28), (C7×D8).4C4, C8.16(C7×D4), C4.11(C7×D8), C56.43(C2×C4), (C2×D8).5C14, C8.C42C14, (C14×D8).12C2, (C2×C28).280D4, (C7×M5(2))⋊14C2, (C2×C14).24SD16, C22.3(C7×SD16), C28.73(C22⋊C4), (C2×C56).266C22, C14.41(D4⋊C4), (C2×C4).11(C7×D4), C4.5(C7×C22⋊C4), (C2×C8).13(C2×C14), (C7×C8.C4)⋊11C2, C2.10(C7×D4⋊C4), SmallGroup(448,165)

Series: Derived Chief Lower central Upper central

C1C8 — C7×M5(2)⋊C2
C1C2C4C2×C4C2×C8C2×C56C7×C8.C4 — C7×M5(2)⋊C2
C1C2C4C8 — C7×M5(2)⋊C2
C1C14C2×C28C2×C56 — C7×M5(2)⋊C2

Generators and relations for C7×M5(2)⋊C2
 G = < a,b,c,d | a7=b16=c2=d2=1, ab=ba, ac=ca, ad=da, cbc=b9, dbd=b3c, cd=dc >

Subgroups: 162 in 62 conjugacy classes, 30 normal (26 characteristic)
C1, C2, C2, C4, C22, C22, C7, C8, C8, C2×C4, D4, C23, C14, C14, C16, C2×C8, M4(2), D8, D8, C2×D4, C28, C2×C14, C2×C14, C8.C4, M5(2), C2×D8, C56, C56, C2×C28, C7×D4, C22×C14, M5(2)⋊C2, C112, C2×C56, C7×M4(2), C7×D8, C7×D8, D4×C14, C7×C8.C4, C7×M5(2), C14×D8, C7×M5(2)⋊C2
Quotients: C1, C2, C4, C22, C7, C2×C4, D4, C14, C22⋊C4, D8, SD16, C28, C2×C14, D4⋊C4, C2×C28, C7×D4, M5(2)⋊C2, C7×C22⋊C4, C7×D8, C7×SD16, C7×D4⋊C4, C7×M5(2)⋊C2

Smallest permutation representation of C7×M5(2)⋊C2
On 112 points
Generators in S112
(1 50 19 75 110 47 87)(2 51 20 76 111 48 88)(3 52 21 77 112 33 89)(4 53 22 78 97 34 90)(5 54 23 79 98 35 91)(6 55 24 80 99 36 92)(7 56 25 65 100 37 93)(8 57 26 66 101 38 94)(9 58 27 67 102 39 95)(10 59 28 68 103 40 96)(11 60 29 69 104 41 81)(12 61 30 70 105 42 82)(13 62 31 71 106 43 83)(14 63 32 72 107 44 84)(15 64 17 73 108 45 85)(16 49 18 74 109 46 86)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(2 10)(4 12)(6 14)(8 16)(18 26)(20 28)(22 30)(24 32)(34 42)(36 44)(38 46)(40 48)(49 57)(51 59)(53 61)(55 63)(66 74)(68 76)(70 78)(72 80)(82 90)(84 92)(86 94)(88 96)(97 105)(99 107)(101 109)(103 111)
(2 12)(3 15)(4 10)(5 13)(6 8)(7 11)(14 16)(17 21)(18 32)(20 30)(22 28)(23 31)(24 26)(25 29)(33 45)(34 40)(35 43)(36 38)(37 41)(42 48)(44 46)(49 63)(51 61)(52 64)(53 59)(54 62)(55 57)(56 60)(65 69)(66 80)(68 78)(70 76)(71 79)(72 74)(73 77)(81 93)(82 88)(83 91)(84 86)(85 89)(90 96)(92 94)(97 103)(98 106)(99 101)(100 104)(105 111)(107 109)(108 112)

G:=sub<Sym(112)| (1,50,19,75,110,47,87)(2,51,20,76,111,48,88)(3,52,21,77,112,33,89)(4,53,22,78,97,34,90)(5,54,23,79,98,35,91)(6,55,24,80,99,36,92)(7,56,25,65,100,37,93)(8,57,26,66,101,38,94)(9,58,27,67,102,39,95)(10,59,28,68,103,40,96)(11,60,29,69,104,41,81)(12,61,30,70,105,42,82)(13,62,31,71,106,43,83)(14,63,32,72,107,44,84)(15,64,17,73,108,45,85)(16,49,18,74,109,46,86), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (2,10)(4,12)(6,14)(8,16)(18,26)(20,28)(22,30)(24,32)(34,42)(36,44)(38,46)(40,48)(49,57)(51,59)(53,61)(55,63)(66,74)(68,76)(70,78)(72,80)(82,90)(84,92)(86,94)(88,96)(97,105)(99,107)(101,109)(103,111), (2,12)(3,15)(4,10)(5,13)(6,8)(7,11)(14,16)(17,21)(18,32)(20,30)(22,28)(23,31)(24,26)(25,29)(33,45)(34,40)(35,43)(36,38)(37,41)(42,48)(44,46)(49,63)(51,61)(52,64)(53,59)(54,62)(55,57)(56,60)(65,69)(66,80)(68,78)(70,76)(71,79)(72,74)(73,77)(81,93)(82,88)(83,91)(84,86)(85,89)(90,96)(92,94)(97,103)(98,106)(99,101)(100,104)(105,111)(107,109)(108,112)>;

G:=Group( (1,50,19,75,110,47,87)(2,51,20,76,111,48,88)(3,52,21,77,112,33,89)(4,53,22,78,97,34,90)(5,54,23,79,98,35,91)(6,55,24,80,99,36,92)(7,56,25,65,100,37,93)(8,57,26,66,101,38,94)(9,58,27,67,102,39,95)(10,59,28,68,103,40,96)(11,60,29,69,104,41,81)(12,61,30,70,105,42,82)(13,62,31,71,106,43,83)(14,63,32,72,107,44,84)(15,64,17,73,108,45,85)(16,49,18,74,109,46,86), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (2,10)(4,12)(6,14)(8,16)(18,26)(20,28)(22,30)(24,32)(34,42)(36,44)(38,46)(40,48)(49,57)(51,59)(53,61)(55,63)(66,74)(68,76)(70,78)(72,80)(82,90)(84,92)(86,94)(88,96)(97,105)(99,107)(101,109)(103,111), (2,12)(3,15)(4,10)(5,13)(6,8)(7,11)(14,16)(17,21)(18,32)(20,30)(22,28)(23,31)(24,26)(25,29)(33,45)(34,40)(35,43)(36,38)(37,41)(42,48)(44,46)(49,63)(51,61)(52,64)(53,59)(54,62)(55,57)(56,60)(65,69)(66,80)(68,78)(70,76)(71,79)(72,74)(73,77)(81,93)(82,88)(83,91)(84,86)(85,89)(90,96)(92,94)(97,103)(98,106)(99,101)(100,104)(105,111)(107,109)(108,112) );

G=PermutationGroup([[(1,50,19,75,110,47,87),(2,51,20,76,111,48,88),(3,52,21,77,112,33,89),(4,53,22,78,97,34,90),(5,54,23,79,98,35,91),(6,55,24,80,99,36,92),(7,56,25,65,100,37,93),(8,57,26,66,101,38,94),(9,58,27,67,102,39,95),(10,59,28,68,103,40,96),(11,60,29,69,104,41,81),(12,61,30,70,105,42,82),(13,62,31,71,106,43,83),(14,63,32,72,107,44,84),(15,64,17,73,108,45,85),(16,49,18,74,109,46,86)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(2,10),(4,12),(6,14),(8,16),(18,26),(20,28),(22,30),(24,32),(34,42),(36,44),(38,46),(40,48),(49,57),(51,59),(53,61),(55,63),(66,74),(68,76),(70,78),(72,80),(82,90),(84,92),(86,94),(88,96),(97,105),(99,107),(101,109),(103,111)], [(2,12),(3,15),(4,10),(5,13),(6,8),(7,11),(14,16),(17,21),(18,32),(20,30),(22,28),(23,31),(24,26),(25,29),(33,45),(34,40),(35,43),(36,38),(37,41),(42,48),(44,46),(49,63),(51,61),(52,64),(53,59),(54,62),(55,57),(56,60),(65,69),(66,80),(68,78),(70,76),(71,79),(72,74),(73,77),(81,93),(82,88),(83,91),(84,86),(85,89),(90,96),(92,94),(97,103),(98,106),(99,101),(100,104),(105,111),(107,109),(108,112)]])

112 conjugacy classes

class 1 2A2B2C2D4A4B7A···7F8A8B8C8D8E14A···14F14G···14L14M···14X16A16B16C16D28A···28L56A···56L56M···56R56S···56AD112A···112X
order12222447···78888814···1414···1414···141616161628···2856···5656···5656···56112···112
size11288221···1224881···12···28···844442···22···24···48···84···4

112 irreducible representations

dim11111111112222222244
type++++++++
imageC1C2C2C2C4C7C14C14C14C28D4D4D8SD16C7×D4C7×D4C7×D8C7×SD16M5(2)⋊C2C7×M5(2)⋊C2
kernelC7×M5(2)⋊C2C7×C8.C4C7×M5(2)C14×D8C7×D8M5(2)⋊C2C8.C4M5(2)C2×D8D8C56C2×C28C28C2×C14C8C2×C4C4C22C7C1
# reps111146666241122661212212

Matrix representation of C7×M5(2)⋊C2 in GL4(𝔽113) generated by

28000
02800
00280
00028
,
13151110
100981112
100165149
95976264
,
1000
0100
13151120
100980112
,
1000
11211200
48363182
1648282
G:=sub<GL(4,GF(113))| [28,0,0,0,0,28,0,0,0,0,28,0,0,0,0,28],[13,100,100,95,15,98,16,97,111,1,51,62,0,112,49,64],[1,0,13,100,0,1,15,98,0,0,112,0,0,0,0,112],[1,112,48,1,0,112,36,64,0,0,31,82,0,0,82,82] >;

C7×M5(2)⋊C2 in GAP, Magma, Sage, TeX

C_7\times M_5(2)\rtimes C_2
% in TeX

G:=Group("C7xM5(2):C2");
// GroupNames label

G:=SmallGroup(448,165);
// by ID

G=gap.SmallGroup(448,165);
# by ID

G:=PCGroup([7,-2,-2,-7,-2,-2,-2,-2,392,421,3923,5106,136,4911,172,14117,7068,124]);
// Polycyclic

G:=Group<a,b,c,d|a^7=b^16=c^2=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^9,d*b*d=b^3*c,c*d=d*c>;
// generators/relations

׿
×
𝔽