Copied to
clipboard

G = C2×D8order 32 = 25

Direct product of C2 and D8

direct product, p-group, metabelian, nilpotent (class 3), monomial

Aliases: C2×D8, C4.6D4, C82C22, D41C22, C4.1C23, C22.14D4, (C2×C8)⋊3C2, (C2×D4)⋊4C2, C2.11(C2×D4), (C2×C4).26C22, 2-Sylow(SO-(4,7)), SmallGroup(32,39)

Series: Derived Chief Lower central Upper central Jennings

C1C4 — C2×D8
C1C2C4C2×C4C2×D4 — C2×D8
C1C2C4 — C2×D8
C1C22C2×C4 — C2×D8
C1C2C2C4 — C2×D8

Generators and relations for C2×D8
 G = < a,b,c | a2=b8=c2=1, ab=ba, ac=ca, cbc=b-1 >

4C2
4C2
4C2
4C2
2C22
2C22
2C22
2C22
4C22
4C22
4C22
4C22
2C23
2D4
2D4
2C23

Character table of C2×D8

 class 12A2B2C2D2E2F2G4A4B8A8B8C8D
 size 11114444222222
ρ111111111111111    trivial
ρ21-11-1-11-111-1-1-111    linear of order 2
ρ3111111-1-111-1-1-1-1    linear of order 2
ρ41-11-1-111-11-111-1-1    linear of order 2
ρ51111-1-11111-1-1-1-1    linear of order 2
ρ61-11-11-1-111-111-1-1    linear of order 2
ρ71111-1-1-1-1111111    linear of order 2
ρ81-11-11-11-11-1-1-111    linear of order 2
ρ922220000-2-20000    orthogonal lifted from D4
ρ102-22-20000-220000    orthogonal lifted from D4
ρ1122-2-2000000-222-2    orthogonal lifted from D8
ρ1222-2-20000002-2-22    orthogonal lifted from D8
ρ132-2-22000000-22-22    orthogonal lifted from D8
ρ142-2-220000002-22-2    orthogonal lifted from D8

Permutation representations of C2×D8
On 16 points - transitive group 16T29
Generators in S16
(1 15)(2 16)(3 9)(4 10)(5 11)(6 12)(7 13)(8 14)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)
(1 8)(2 7)(3 6)(4 5)(9 12)(10 11)(13 16)(14 15)

G:=sub<Sym(16)| (1,15)(2,16)(3,9)(4,10)(5,11)(6,12)(7,13)(8,14), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,8)(2,7)(3,6)(4,5)(9,12)(10,11)(13,16)(14,15)>;

G:=Group( (1,15)(2,16)(3,9)(4,10)(5,11)(6,12)(7,13)(8,14), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,8)(2,7)(3,6)(4,5)(9,12)(10,11)(13,16)(14,15) );

G=PermutationGroup([[(1,15),(2,16),(3,9),(4,10),(5,11),(6,12),(7,13),(8,14)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16)], [(1,8),(2,7),(3,6),(4,5),(9,12),(10,11),(13,16),(14,15)]])

G:=TransitiveGroup(16,29);

C2×D8 is a maximal subgroup of
C2.D16  M5(2)⋊C2  D8⋊C4  C22⋊D8  D4⋊D4  C4⋊D8  D4.2D4  C87D4  C82D4  D4.4D4  C84D4  C8.12D4  C83D4  C16⋊C22  D4○D8  C3⋊S3⋊D8
C2×D8 is a maximal quotient of
C22⋊D8  C4⋊D8  C87D4  D4⋊Q8  C22.D8  C4.4D8  C84D4  C82Q8  C4○D16  C16⋊C22  Q32⋊C2  C3⋊S3⋊D8

Matrix representation of C2×D8 in GL3(𝔽17) generated by

1600
0160
0016
,
100
006
0146
,
1600
010
0116
G:=sub<GL(3,GF(17))| [16,0,0,0,16,0,0,0,16],[1,0,0,0,0,14,0,6,6],[16,0,0,0,1,1,0,0,16] >;

C2×D8 in GAP, Magma, Sage, TeX

C_2\times D_8
% in TeX

G:=Group("C2xD8");
// GroupNames label

G:=SmallGroup(32,39);
// by ID

G=gap.SmallGroup(32,39);
# by ID

G:=PCGroup([5,-2,2,2,-2,-2,101,483,248,58]);
// Polycyclic

G:=Group<a,b,c|a^2=b^8=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C2×D8 in TeX
Character table of C2×D8 in TeX

׿
×
𝔽