Extensions 1→N→G→Q→1 with N=C8⋊C22 and Q=D7

Direct product G=N×Q with N=C8⋊C22 and Q=D7

Semidirect products G=N:Q with N=C8⋊C22 and Q=D7
extensionφ:Q→Out NdρLabelID
C8⋊C221D7 = D2818D4φ: D7/C7C2 ⊆ Out C8⋊C22568+C8:C2^2:1D7448,732
C8⋊C222D7 = M4(2).D14φ: D7/C7C2 ⊆ Out C8⋊C221128+C8:C2^2:2D7448,733
C8⋊C223D7 = D28.38D4φ: D7/C7C2 ⊆ Out C8⋊C221128-C8:C2^2:3D7448,735
C8⋊C224D7 = D85D14φ: D7/C7C2 ⊆ Out C8⋊C221128+C8:C2^2:4D7448,1227
C8⋊C225D7 = D86D14φ: D7/C7C2 ⊆ Out C8⋊C221128-C8:C2^2:5D7448,1228
C8⋊C226D7 = SD16⋊D14φ: trivial image1128-C8:C2^2:6D7448,1226

Non-split extensions G=N.Q with N=C8⋊C22 and Q=D7
extensionφ:Q→Out NdρLabelID
C8⋊C22.D7 = M4(2).13D14φ: D7/C7C2 ⊆ Out C8⋊C221128-C8:C2^2.D7448,734