Copied to
clipboard

G = M4(2).13D14order 448 = 26·7

13rd non-split extension by M4(2) of D14 acting via D14/C7=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: M4(2).13D14, C7⋊C8.31D4, C8⋊C22.D7, (C7×D4).12D4, C4.179(D4×D7), (C7×Q8).12D4, C4○D4.25D14, (C2×D4).80D14, C28.196(C2×D4), C76(D4.3D4), D4.5(C7⋊D4), Q8.Dic76C2, Q8.5(C7⋊D4), D4.9D144C2, C4.12D289C2, C28.D410C2, (C2×C28).15C23, C28.53D410C2, C14.125(C4⋊D4), (D4×C14).105C22, C4.Dic7.25C22, C2.31(Dic7⋊D4), C22.14(D42D7), (C7×M4(2)).23C22, (C2×Dic14).134C22, C4.52(C2×C7⋊D4), (C2×D4.D7)⋊22C2, (C7×C8⋊C22).1C2, (C2×C7⋊C8).171C22, (C2×C4).15(C22×D7), (C2×C14).37(C4○D4), (C7×C4○D4).13C22, SmallGroup(448,734)

Series: Derived Chief Lower central Upper central

C1C2×C28 — M4(2).13D14
C1C7C14C28C2×C28C2×Dic14D4.9D14 — M4(2).13D14
C7C14C2×C28 — M4(2).13D14
C1C2C2×C4C8⋊C22

Generators and relations for M4(2).13D14
 G = < a,b,c,d | a8=b2=c14=1, d2=a2, bab=a5, cac-1=a-1, dad-1=a3b, cbc-1=dbd-1=a4b, dcd-1=a6c-1 >

Subgroups: 428 in 104 conjugacy classes, 37 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C14, C14, C2×C8, M4(2), M4(2), D8, SD16, Q16, C2×D4, C2×Q8, C4○D4, Dic7, C28, C28, C2×C14, C2×C14, C4.D4, C4.10D4, C8.C4, C8○D4, C2×SD16, C8⋊C22, C8.C22, C7⋊C8, C7⋊C8, C56, Dic14, C2×Dic7, C2×C28, C2×C28, C7×D4, C7×D4, C7×Q8, C22×C14, D4.3D4, C2×C7⋊C8, C2×C7⋊C8, C4.Dic7, C4.Dic7, D4.D7, C7⋊Q16, C7×M4(2), C7×D8, C7×SD16, C2×Dic14, D4×C14, C7×C4○D4, C28.53D4, C4.12D28, C28.D4, C2×D4.D7, Q8.Dic7, D4.9D14, C7×C8⋊C22, M4(2).13D14
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C4○D4, D14, C4⋊D4, C7⋊D4, C22×D7, D4.3D4, D4×D7, D42D7, C2×C7⋊D4, Dic7⋊D4, M4(2).13D14

Smallest permutation representation of M4(2).13D14
On 112 points
Generators in S112
(1 8 66 55 106 99 48 59)(2 60 49 100 107 56 67 9)(3 10 68 43 108 101 50 61)(4 62 51 102 109 44 69 11)(5 12 70 45 110 103 52 63)(6 64 53 104 111 46 57 13)(7 14 58 47 112 105 54 65)(15 73 80 22 88 31 38 95)(16 96 39 32 89 23 81 74)(17 75 82 24 90 33 40 97)(18 98 41 34 91 25 83 76)(19 77 84 26 92 35 42 85)(20 86 29 36 93 27 71 78)(21 79 72 28 94 37 30 87)
(1 106)(3 108)(5 110)(7 112)(9 100)(11 102)(13 104)(15 88)(17 90)(19 92)(21 94)(23 96)(25 98)(27 86)(30 72)(32 74)(34 76)(36 78)(38 80)(40 82)(42 84)(44 62)(46 64)(48 66)(50 68)(52 70)(54 58)(56 60)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 39 66 89 106 81 48 16)(2 88 49 38 107 15 67 80)(3 37 68 87 108 79 50 28)(4 86 51 36 109 27 69 78)(5 35 70 85 110 77 52 26)(6 98 53 34 111 25 57 76)(7 33 58 97 112 75 54 24)(8 96 55 32 99 23 59 74)(9 31 60 95 100 73 56 22)(10 94 43 30 101 21 61 72)(11 29 62 93 102 71 44 20)(12 92 45 42 103 19 63 84)(13 41 64 91 104 83 46 18)(14 90 47 40 105 17 65 82)

G:=sub<Sym(112)| (1,8,66,55,106,99,48,59)(2,60,49,100,107,56,67,9)(3,10,68,43,108,101,50,61)(4,62,51,102,109,44,69,11)(5,12,70,45,110,103,52,63)(6,64,53,104,111,46,57,13)(7,14,58,47,112,105,54,65)(15,73,80,22,88,31,38,95)(16,96,39,32,89,23,81,74)(17,75,82,24,90,33,40,97)(18,98,41,34,91,25,83,76)(19,77,84,26,92,35,42,85)(20,86,29,36,93,27,71,78)(21,79,72,28,94,37,30,87), (1,106)(3,108)(5,110)(7,112)(9,100)(11,102)(13,104)(15,88)(17,90)(19,92)(21,94)(23,96)(25,98)(27,86)(30,72)(32,74)(34,76)(36,78)(38,80)(40,82)(42,84)(44,62)(46,64)(48,66)(50,68)(52,70)(54,58)(56,60), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,39,66,89,106,81,48,16)(2,88,49,38,107,15,67,80)(3,37,68,87,108,79,50,28)(4,86,51,36,109,27,69,78)(5,35,70,85,110,77,52,26)(6,98,53,34,111,25,57,76)(7,33,58,97,112,75,54,24)(8,96,55,32,99,23,59,74)(9,31,60,95,100,73,56,22)(10,94,43,30,101,21,61,72)(11,29,62,93,102,71,44,20)(12,92,45,42,103,19,63,84)(13,41,64,91,104,83,46,18)(14,90,47,40,105,17,65,82)>;

G:=Group( (1,8,66,55,106,99,48,59)(2,60,49,100,107,56,67,9)(3,10,68,43,108,101,50,61)(4,62,51,102,109,44,69,11)(5,12,70,45,110,103,52,63)(6,64,53,104,111,46,57,13)(7,14,58,47,112,105,54,65)(15,73,80,22,88,31,38,95)(16,96,39,32,89,23,81,74)(17,75,82,24,90,33,40,97)(18,98,41,34,91,25,83,76)(19,77,84,26,92,35,42,85)(20,86,29,36,93,27,71,78)(21,79,72,28,94,37,30,87), (1,106)(3,108)(5,110)(7,112)(9,100)(11,102)(13,104)(15,88)(17,90)(19,92)(21,94)(23,96)(25,98)(27,86)(30,72)(32,74)(34,76)(36,78)(38,80)(40,82)(42,84)(44,62)(46,64)(48,66)(50,68)(52,70)(54,58)(56,60), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,39,66,89,106,81,48,16)(2,88,49,38,107,15,67,80)(3,37,68,87,108,79,50,28)(4,86,51,36,109,27,69,78)(5,35,70,85,110,77,52,26)(6,98,53,34,111,25,57,76)(7,33,58,97,112,75,54,24)(8,96,55,32,99,23,59,74)(9,31,60,95,100,73,56,22)(10,94,43,30,101,21,61,72)(11,29,62,93,102,71,44,20)(12,92,45,42,103,19,63,84)(13,41,64,91,104,83,46,18)(14,90,47,40,105,17,65,82) );

G=PermutationGroup([[(1,8,66,55,106,99,48,59),(2,60,49,100,107,56,67,9),(3,10,68,43,108,101,50,61),(4,62,51,102,109,44,69,11),(5,12,70,45,110,103,52,63),(6,64,53,104,111,46,57,13),(7,14,58,47,112,105,54,65),(15,73,80,22,88,31,38,95),(16,96,39,32,89,23,81,74),(17,75,82,24,90,33,40,97),(18,98,41,34,91,25,83,76),(19,77,84,26,92,35,42,85),(20,86,29,36,93,27,71,78),(21,79,72,28,94,37,30,87)], [(1,106),(3,108),(5,110),(7,112),(9,100),(11,102),(13,104),(15,88),(17,90),(19,92),(21,94),(23,96),(25,98),(27,86),(30,72),(32,74),(34,76),(36,78),(38,80),(40,82),(42,84),(44,62),(46,64),(48,66),(50,68),(52,70),(54,58),(56,60)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,39,66,89,106,81,48,16),(2,88,49,38,107,15,67,80),(3,37,68,87,108,79,50,28),(4,86,51,36,109,27,69,78),(5,35,70,85,110,77,52,26),(6,98,53,34,111,25,57,76),(7,33,58,97,112,75,54,24),(8,96,55,32,99,23,59,74),(9,31,60,95,100,73,56,22),(10,94,43,30,101,21,61,72),(11,29,62,93,102,71,44,20),(12,92,45,42,103,19,63,84),(13,41,64,91,104,83,46,18),(14,90,47,40,105,17,65,82)]])

49 conjugacy classes

class 1 2A2B2C2D4A4B4C4D7A7B7C8A8B8C8D8E8F8G14A14B14C14D14E14F14G···14O28A···28F28G28H28I56A···56F
order122224444777888888814141414141414···1428···2828282856···56
size112482245622281414282828562224448···84···48888···8

49 irreducible representations

dim1111111122222222224448
type++++++++++++++++--
imageC1C2C2C2C2C2C2C2D4D4D4D7C4○D4D14D14D14C7⋊D4C7⋊D4D4.3D4D4×D7D42D7M4(2).13D14
kernelM4(2).13D14C28.53D4C4.12D28C28.D4C2×D4.D7Q8.Dic7D4.9D14C7×C8⋊C22C7⋊C8C7×D4C7×Q8C8⋊C22C2×C14M4(2)C2×D4C4○D4D4Q8C7C4C22C1
# reps1111111121132333662333

Matrix representation of M4(2).13D14 in GL8(𝔽113)

0112000000
10000000
0001120000
00100000
000000177
0000000112
00001000
00004411200
,
1120000000
0112000000
0011200000
0001120000
0000112000
0000011200
00000010
00000001
,
7802500000
0350880000
6302600000
0500870000
00000010
00000001
00001000
00000100
,
0480540000
6505900000
0850650000
2804800000
000000016
00000070
0000269700
000078700

G:=sub<GL(8,GF(113))| [0,1,0,0,0,0,0,0,112,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,112,0,0,0,0,0,0,0,0,0,0,0,1,44,0,0,0,0,0,0,0,112,0,0,0,0,1,0,0,0,0,0,0,0,77,112,0,0],[112,0,0,0,0,0,0,0,0,112,0,0,0,0,0,0,0,0,112,0,0,0,0,0,0,0,0,112,0,0,0,0,0,0,0,0,112,0,0,0,0,0,0,0,0,112,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[78,0,63,0,0,0,0,0,0,35,0,50,0,0,0,0,25,0,26,0,0,0,0,0,0,88,0,87,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[0,65,0,28,0,0,0,0,48,0,85,0,0,0,0,0,0,59,0,48,0,0,0,0,54,0,65,0,0,0,0,0,0,0,0,0,0,0,26,7,0,0,0,0,0,0,97,87,0,0,0,0,0,7,0,0,0,0,0,0,16,0,0,0] >;

M4(2).13D14 in GAP, Magma, Sage, TeX

M_4(2)._{13}D_{14}
% in TeX

G:=Group("M4(2).13D14");
// GroupNames label

G:=SmallGroup(448,734);
// by ID

G=gap.SmallGroup(448,734);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,224,253,254,219,1123,297,136,1684,851,438,102,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^14=1,d^2=a^2,b*a*b=a^5,c*a*c^-1=a^-1,d*a*d^-1=a^3*b,c*b*c^-1=d*b*d^-1=a^4*b,d*c*d^-1=a^6*c^-1>;
// generators/relations

׿
×
𝔽