Copied to
clipboard

G = D86D14order 448 = 26·7

6th semidirect product of D8 and D14 acting via D14/D7=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D86D14, SD164D14, D28.42D4, C56.3C23, C28.22C24, M4(2)⋊10D14, Dic14.42D4, Dic282C22, D28.15C23, Dic14.15C23, C4○D44D14, C8⋊C225D7, C7⋊D4.5D4, D8⋊D74C2, D83D72C2, D28.C42C2, (D7×SD16)⋊2C2, C4.116(D4×D7), C74(D4○SD16), (C8×D7)⋊4C22, (C7×D8)⋊4C22, C7⋊C8.26C23, D46D148C2, (Q8×D7)⋊3C22, C8.3(C22×D7), D4⋊D715C22, D14.33(C2×D4), C8.D142C2, C28.243(C2×D4), SD16⋊D72C2, C56⋊C24C22, C8⋊D74C22, Q8⋊D714C22, (D4×D7).3C22, C22.15(D4×D7), C4.22(C23×D7), (C2×D4).117D14, D4.8D144C2, D42D74C22, D4.D714C22, Dic7.38(C2×D4), (C7×SD16)⋊4C22, D4.15(C22×D7), (C4×D7).14C23, (C7×D4).15C23, C7⋊Q1613C22, D4.10D147C2, Q8.15(C22×D7), (C7×Q8).15C23, (C2×C28).113C23, C4○D28.29C22, C14.123(C22×D4), (C7×M4(2))⋊4C22, (C2×Dic14)⋊40C22, (D4×C14).168C22, C2.96(C2×D4×D7), (C7×C8⋊C22)⋊4C2, (C2×C7⋊C8)⋊18C22, (C2×D4.D7)⋊29C2, (C2×C14).68(C2×D4), (C7×C4○D4)⋊7C22, (C2×C4).97(C22×D7), SmallGroup(448,1228)

Series: Derived Chief Lower central Upper central

C1C28 — D86D14
C1C7C14C28C4×D7C4○D28D46D14 — D86D14
C7C14C28 — D86D14
C1C2C2×C4C8⋊C22

Generators and relations for D86D14
 G = < a,b,c,d | a8=b2=c14=d2=1, bab=a-1, cac-1=dad=a3, bc=cb, dbd=a4b, dcd=c-1 >

Subgroups: 1292 in 258 conjugacy classes, 99 normal (45 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C8, C2×C4, C2×C4, D4, D4, D4, Q8, Q8, C23, D7, C14, C14, C2×C8, M4(2), M4(2), D8, D8, SD16, SD16, Q16, C2×D4, C2×D4, C2×Q8, C4○D4, C4○D4, Dic7, Dic7, C28, C28, D14, D14, C2×C14, C2×C14, C8○D4, C2×SD16, C4○D8, C8⋊C22, C8⋊C22, C8.C22, 2+ 1+4, 2- 1+4, C7⋊C8, C56, Dic14, Dic14, Dic14, C4×D7, C4×D7, D28, C2×Dic7, C7⋊D4, C7⋊D4, C2×C28, C2×C28, C7×D4, C7×D4, C7×D4, C7×Q8, C22×D7, C22×C14, D4○SD16, C8×D7, C8⋊D7, C56⋊C2, Dic28, C2×C7⋊C8, D4⋊D7, D4.D7, D4.D7, Q8⋊D7, C7⋊Q16, C7×M4(2), C7×D8, C7×SD16, C2×Dic14, C2×Dic14, C4○D28, C4○D28, D4×D7, D4×D7, D42D7, D42D7, Q8×D7, C2×C7⋊D4, D4×C14, C7×C4○D4, D28.C4, C8.D14, D8⋊D7, D83D7, D7×SD16, SD16⋊D7, C2×D4.D7, D4.8D14, C7×C8⋊C22, D46D14, D4.10D14, D86D14
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C24, D14, C22×D4, C22×D7, D4○SD16, D4×D7, C23×D7, C2×D4×D7, D86D14

Smallest permutation representation of D86D14
On 112 points
Generators in S112
(1 39 85 21 71 109 46 62)(2 22 47 40 72 63 86 110)(3 41 87 23 73 111 48 64)(4 24 49 42 74 65 88 112)(5 29 89 25 75 99 50 66)(6 26 51 30 76 67 90 100)(7 31 91 27 77 101 52 68)(8 28 53 32 78 69 92 102)(9 33 93 15 79 103 54 70)(10 16 55 34 80 57 94 104)(11 35 95 17 81 105 56 58)(12 18 43 36 82 59 96 106)(13 37 97 19 83 107 44 60)(14 20 45 38 84 61 98 108)
(15 103)(16 104)(17 105)(18 106)(19 107)(20 108)(21 109)(22 110)(23 111)(24 112)(25 99)(26 100)(27 101)(28 102)(29 66)(30 67)(31 68)(32 69)(33 70)(34 57)(35 58)(36 59)(37 60)(38 61)(39 62)(40 63)(41 64)(42 65)(43 96)(44 97)(45 98)(46 85)(47 86)(48 87)(49 88)(50 89)(51 90)(52 91)(53 92)(54 93)(55 94)(56 95)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 91)(2 90)(3 89)(4 88)(5 87)(6 86)(7 85)(8 98)(9 97)(10 96)(11 95)(12 94)(13 93)(14 92)(15 19)(16 18)(20 28)(21 27)(22 26)(23 25)(29 111)(30 110)(31 109)(32 108)(33 107)(34 106)(35 105)(36 104)(37 103)(38 102)(39 101)(40 100)(41 99)(42 112)(43 80)(44 79)(45 78)(46 77)(47 76)(48 75)(49 74)(50 73)(51 72)(52 71)(53 84)(54 83)(55 82)(56 81)(57 59)(60 70)(61 69)(62 68)(63 67)(64 66)

G:=sub<Sym(112)| (1,39,85,21,71,109,46,62)(2,22,47,40,72,63,86,110)(3,41,87,23,73,111,48,64)(4,24,49,42,74,65,88,112)(5,29,89,25,75,99,50,66)(6,26,51,30,76,67,90,100)(7,31,91,27,77,101,52,68)(8,28,53,32,78,69,92,102)(9,33,93,15,79,103,54,70)(10,16,55,34,80,57,94,104)(11,35,95,17,81,105,56,58)(12,18,43,36,82,59,96,106)(13,37,97,19,83,107,44,60)(14,20,45,38,84,61,98,108), (15,103)(16,104)(17,105)(18,106)(19,107)(20,108)(21,109)(22,110)(23,111)(24,112)(25,99)(26,100)(27,101)(28,102)(29,66)(30,67)(31,68)(32,69)(33,70)(34,57)(35,58)(36,59)(37,60)(38,61)(39,62)(40,63)(41,64)(42,65)(43,96)(44,97)(45,98)(46,85)(47,86)(48,87)(49,88)(50,89)(51,90)(52,91)(53,92)(54,93)(55,94)(56,95), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,91)(2,90)(3,89)(4,88)(5,87)(6,86)(7,85)(8,98)(9,97)(10,96)(11,95)(12,94)(13,93)(14,92)(15,19)(16,18)(20,28)(21,27)(22,26)(23,25)(29,111)(30,110)(31,109)(32,108)(33,107)(34,106)(35,105)(36,104)(37,103)(38,102)(39,101)(40,100)(41,99)(42,112)(43,80)(44,79)(45,78)(46,77)(47,76)(48,75)(49,74)(50,73)(51,72)(52,71)(53,84)(54,83)(55,82)(56,81)(57,59)(60,70)(61,69)(62,68)(63,67)(64,66)>;

G:=Group( (1,39,85,21,71,109,46,62)(2,22,47,40,72,63,86,110)(3,41,87,23,73,111,48,64)(4,24,49,42,74,65,88,112)(5,29,89,25,75,99,50,66)(6,26,51,30,76,67,90,100)(7,31,91,27,77,101,52,68)(8,28,53,32,78,69,92,102)(9,33,93,15,79,103,54,70)(10,16,55,34,80,57,94,104)(11,35,95,17,81,105,56,58)(12,18,43,36,82,59,96,106)(13,37,97,19,83,107,44,60)(14,20,45,38,84,61,98,108), (15,103)(16,104)(17,105)(18,106)(19,107)(20,108)(21,109)(22,110)(23,111)(24,112)(25,99)(26,100)(27,101)(28,102)(29,66)(30,67)(31,68)(32,69)(33,70)(34,57)(35,58)(36,59)(37,60)(38,61)(39,62)(40,63)(41,64)(42,65)(43,96)(44,97)(45,98)(46,85)(47,86)(48,87)(49,88)(50,89)(51,90)(52,91)(53,92)(54,93)(55,94)(56,95), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,91)(2,90)(3,89)(4,88)(5,87)(6,86)(7,85)(8,98)(9,97)(10,96)(11,95)(12,94)(13,93)(14,92)(15,19)(16,18)(20,28)(21,27)(22,26)(23,25)(29,111)(30,110)(31,109)(32,108)(33,107)(34,106)(35,105)(36,104)(37,103)(38,102)(39,101)(40,100)(41,99)(42,112)(43,80)(44,79)(45,78)(46,77)(47,76)(48,75)(49,74)(50,73)(51,72)(52,71)(53,84)(54,83)(55,82)(56,81)(57,59)(60,70)(61,69)(62,68)(63,67)(64,66) );

G=PermutationGroup([[(1,39,85,21,71,109,46,62),(2,22,47,40,72,63,86,110),(3,41,87,23,73,111,48,64),(4,24,49,42,74,65,88,112),(5,29,89,25,75,99,50,66),(6,26,51,30,76,67,90,100),(7,31,91,27,77,101,52,68),(8,28,53,32,78,69,92,102),(9,33,93,15,79,103,54,70),(10,16,55,34,80,57,94,104),(11,35,95,17,81,105,56,58),(12,18,43,36,82,59,96,106),(13,37,97,19,83,107,44,60),(14,20,45,38,84,61,98,108)], [(15,103),(16,104),(17,105),(18,106),(19,107),(20,108),(21,109),(22,110),(23,111),(24,112),(25,99),(26,100),(27,101),(28,102),(29,66),(30,67),(31,68),(32,69),(33,70),(34,57),(35,58),(36,59),(37,60),(38,61),(39,62),(40,63),(41,64),(42,65),(43,96),(44,97),(45,98),(46,85),(47,86),(48,87),(49,88),(50,89),(51,90),(52,91),(53,92),(54,93),(55,94),(56,95)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,91),(2,90),(3,89),(4,88),(5,87),(6,86),(7,85),(8,98),(9,97),(10,96),(11,95),(12,94),(13,93),(14,92),(15,19),(16,18),(20,28),(21,27),(22,26),(23,25),(29,111),(30,110),(31,109),(32,108),(33,107),(34,106),(35,105),(36,104),(37,103),(38,102),(39,101),(40,100),(41,99),(42,112),(43,80),(44,79),(45,78),(46,77),(47,76),(48,75),(49,74),(50,73),(51,72),(52,71),(53,84),(54,83),(55,82),(56,81),(57,59),(60,70),(61,69),(62,68),(63,67),(64,66)]])

55 conjugacy classes

class 1 2A2B2C2D2E2F2G2H4A4B4C4D4E4F4G4H7A7B7C8A8B8C8D8E14A14B14C14D14E14F14G···14O28A···28F28G28H28I56A···56F
order122222222444444447778888814141414141414···1428···2828282856···56
size1124441414282241414282828222441414282224448···84···48888···8

55 irreducible representations

dim1111111111112222222224448
type+++++++++++++++++++++++-
imageC1C2C2C2C2C2C2C2C2C2C2C2D4D4D4D7D14D14D14D14D14D4○SD16D4×D7D4×D7D86D14
kernelD86D14D28.C4C8.D14D8⋊D7D83D7D7×SD16SD16⋊D7C2×D4.D7D4.8D14C7×C8⋊C22D46D14D4.10D14Dic14D28C7⋊D4C8⋊C22M4(2)D8SD16C2×D4C4○D4C7C4C22C1
# reps1112222111111123366332333

Matrix representation of D86D14 in GL6(𝔽113)

100000
010000
00009122
00360260
00771310013
00010010013
,
11200000
01120000
001000
008111200
000010
003200112
,
23100000
93110000
0011201060
00001121
000010
000110
,
10310000
14100000
00112700
000100
0001120112
0001121120

G:=sub<GL(6,GF(113))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,36,77,0,0,0,0,0,13,100,0,0,91,26,100,100,0,0,22,0,13,13],[112,0,0,0,0,0,0,112,0,0,0,0,0,0,1,81,0,32,0,0,0,112,0,0,0,0,0,0,1,0,0,0,0,0,0,112],[23,93,0,0,0,0,10,11,0,0,0,0,0,0,112,0,0,0,0,0,0,0,0,1,0,0,106,112,1,1,0,0,0,1,0,0],[103,14,0,0,0,0,1,10,0,0,0,0,0,0,112,0,0,0,0,0,7,1,112,112,0,0,0,0,0,112,0,0,0,0,112,0] >;

D86D14 in GAP, Magma, Sage, TeX

D_8\rtimes_6D_{14}
% in TeX

G:=Group("D8:6D14");
// GroupNames label

G:=SmallGroup(448,1228);
// by ID

G=gap.SmallGroup(448,1228);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,477,570,185,136,438,235,102,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^14=d^2=1,b*a*b=a^-1,c*a*c^-1=d*a*d=a^3,b*c=c*b,d*b*d=a^4*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽