Extensions 1→N→G→Q→1 with N=C4×D7 and Q=C8

Direct product G=N×Q with N=C4×D7 and Q=C8
dρLabelID
D7×C4×C8224D7xC4xC8448,218

Semidirect products G=N:Q with N=C4×D7 and Q=C8
extensionφ:Q→Out NdρLabelID
(C4×D7)⋊1C8 = D7×C4⋊C8φ: C8/C4C2 ⊆ Out C4×D7224(C4xD7):1C8448,366
(C4×D7)⋊2C8 = C42.200D14φ: C8/C4C2 ⊆ Out C4×D7224(C4xD7):2C8448,367
(C4×D7)⋊3C8 = C42.282D14φ: C8/C4C2 ⊆ Out C4×D7224(C4xD7):3C8448,219

Non-split extensions G=N.Q with N=C4×D7 and Q=C8
extensionφ:Q→Out NdρLabelID
(C4×D7).1C8 = D7×M5(2)φ: C8/C4C2 ⊆ Out C4×D71124(C4xD7).1C8448,440
(C4×D7).2C8 = C32⋊D7φ: C8/C4C2 ⊆ Out C4×D72242(C4xD7).2C8448,4
(C4×D7).3C8 = C2×C16⋊D7φ: C8/C4C2 ⊆ Out C4×D7224(C4xD7).3C8448,434
(C4×D7).4C8 = D7×C32φ: trivial image2242(C4xD7).4C8448,3
(C4×D7).5C8 = D7×C2×C16φ: trivial image224(C4xD7).5C8448,433

׿
×
𝔽