Extensions 1→N→G→Q→1 with N=Q8×C28 and Q=C2

Direct product G=N×Q with N=Q8×C28 and Q=C2
dρLabelID
Q8×C2×C28448Q8xC2xC28448,1299

Semidirect products G=N:Q with N=Q8×C28 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8×C28)⋊1C2 = C4×Q8⋊D7φ: C2/C1C2 ⊆ Out Q8×C28224(Q8xC28):1C2448,559
(Q8×C28)⋊2C2 = C42.56D14φ: C2/C1C2 ⊆ Out Q8×C28224(Q8xC28):2C2448,560
(Q8×C28)⋊3C2 = Q8⋊D28φ: C2/C1C2 ⊆ Out Q8×C28224(Q8xC28):3C2448,561
(Q8×C28)⋊4C2 = Q8.1D28φ: C2/C1C2 ⊆ Out Q8×C28224(Q8xC28):4C2448,562
(Q8×C28)⋊5C2 = C42.122D14φ: C2/C1C2 ⊆ Out Q8×C28224(Q8xC28):5C2448,1021
(Q8×C28)⋊6C2 = C4×Q8×D7φ: C2/C1C2 ⊆ Out Q8×C28224(Q8xC28):6C2448,1024
(Q8×C28)⋊7C2 = C42.125D14φ: C2/C1C2 ⊆ Out Q8×C28224(Q8xC28):7C2448,1025
(Q8×C28)⋊8C2 = C4×Q82D7φ: C2/C1C2 ⊆ Out Q8×C28224(Q8xC28):8C2448,1026
(Q8×C28)⋊9C2 = C42.126D14φ: C2/C1C2 ⊆ Out Q8×C28224(Q8xC28):9C2448,1027
(Q8×C28)⋊10C2 = Q8×D28φ: C2/C1C2 ⊆ Out Q8×C28224(Q8xC28):10C2448,1028
(Q8×C28)⋊11C2 = Q85D28φ: C2/C1C2 ⊆ Out Q8×C28224(Q8xC28):11C2448,1029
(Q8×C28)⋊12C2 = Q86D28φ: C2/C1C2 ⊆ Out Q8×C28224(Q8xC28):12C2448,1030
(Q8×C28)⋊13C2 = C42.232D14φ: C2/C1C2 ⊆ Out Q8×C28224(Q8xC28):13C2448,1031
(Q8×C28)⋊14C2 = D2810Q8φ: C2/C1C2 ⊆ Out Q8×C28224(Q8xC28):14C2448,1032
(Q8×C28)⋊15C2 = C42.131D14φ: C2/C1C2 ⊆ Out Q8×C28224(Q8xC28):15C2448,1033
(Q8×C28)⋊16C2 = C42.132D14φ: C2/C1C2 ⊆ Out Q8×C28224(Q8xC28):16C2448,1034
(Q8×C28)⋊17C2 = C42.133D14φ: C2/C1C2 ⊆ Out Q8×C28224(Q8xC28):17C2448,1035
(Q8×C28)⋊18C2 = C42.134D14φ: C2/C1C2 ⊆ Out Q8×C28224(Q8xC28):18C2448,1036
(Q8×C28)⋊19C2 = C42.135D14φ: C2/C1C2 ⊆ Out Q8×C28224(Q8xC28):19C2448,1037
(Q8×C28)⋊20C2 = C42.136D14φ: C2/C1C2 ⊆ Out Q8×C28224(Q8xC28):20C2448,1038
(Q8×C28)⋊21C2 = SD16×C28φ: C2/C1C2 ⊆ Out Q8×C28224(Q8xC28):21C2448,846
(Q8×C28)⋊22C2 = C7×SD16⋊C4φ: C2/C1C2 ⊆ Out Q8×C28224(Q8xC28):22C2448,848
(Q8×C28)⋊23C2 = C7×C4⋊SD16φ: C2/C1C2 ⊆ Out Q8×C28224(Q8xC28):23C2448,868
(Q8×C28)⋊24C2 = C7×Q8.D4φ: C2/C1C2 ⊆ Out Q8×C28224(Q8xC28):24C2448,872
(Q8×C28)⋊25C2 = C7×C23.32C23φ: C2/C1C2 ⊆ Out Q8×C28224(Q8xC28):25C2448,1302
(Q8×C28)⋊26C2 = C7×C23.33C23φ: C2/C1C2 ⊆ Out Q8×C28224(Q8xC28):26C2448,1303
(Q8×C28)⋊27C2 = C7×C23.36C23φ: C2/C1C2 ⊆ Out Q8×C28224(Q8xC28):27C2448,1312
(Q8×C28)⋊28C2 = C7×C23.37C23φ: C2/C1C2 ⊆ Out Q8×C28224(Q8xC28):28C2448,1316
(Q8×C28)⋊29C2 = C7×C22.35C24φ: C2/C1C2 ⊆ Out Q8×C28224(Q8xC28):29C2448,1324
(Q8×C28)⋊30C2 = C7×C22.36C24φ: C2/C1C2 ⊆ Out Q8×C28224(Q8xC28):30C2448,1325
(Q8×C28)⋊31C2 = C7×Q85D4φ: C2/C1C2 ⊆ Out Q8×C28224(Q8xC28):31C2448,1331
(Q8×C28)⋊32C2 = C7×D4×Q8φ: C2/C1C2 ⊆ Out Q8×C28224(Q8xC28):32C2448,1332
(Q8×C28)⋊33C2 = C7×Q86D4φ: C2/C1C2 ⊆ Out Q8×C28224(Q8xC28):33C2448,1333
(Q8×C28)⋊34C2 = C7×C22.46C24φ: C2/C1C2 ⊆ Out Q8×C28224(Q8xC28):34C2448,1335
(Q8×C28)⋊35C2 = C7×D43Q8φ: C2/C1C2 ⊆ Out Q8×C28224(Q8xC28):35C2448,1337
(Q8×C28)⋊36C2 = C7×C22.50C24φ: C2/C1C2 ⊆ Out Q8×C28224(Q8xC28):36C2448,1339
(Q8×C28)⋊37C2 = C7×C22.53C24φ: C2/C1C2 ⊆ Out Q8×C28224(Q8xC28):37C2448,1342
(Q8×C28)⋊38C2 = C4○D4×C28φ: trivial image224(Q8xC28):38C2448,1300

Non-split extensions G=N.Q with N=Q8×C28 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8×C28).1C2 = C28.26Q16φ: C2/C1C2 ⊆ Out Q8×C28448(Q8xC28).1C2448,92
(Q8×C28).2C2 = C28.48SD16φ: C2/C1C2 ⊆ Out Q8×C28448(Q8xC28).2C2448,554
(Q8×C28).3C2 = C28.23Q16φ: C2/C1C2 ⊆ Out Q8×C28448(Q8xC28).3C2448,555
(Q8×C28).4C2 = Q8.3Dic14φ: C2/C1C2 ⊆ Out Q8×C28448(Q8xC28).4C2448,556
(Q8×C28).5C2 = Q8×C7⋊C8φ: C2/C1C2 ⊆ Out Q8×C28448(Q8xC28).5C2448,557
(Q8×C28).6C2 = C42.210D14φ: C2/C1C2 ⊆ Out Q8×C28448(Q8xC28).6C2448,558
(Q8×C28).7C2 = C4×C7⋊Q16φ: C2/C1C2 ⊆ Out Q8×C28448(Q8xC28).7C2448,563
(Q8×C28).8C2 = C42.59D14φ: C2/C1C2 ⊆ Out Q8×C28448(Q8xC28).8C2448,564
(Q8×C28).9C2 = C287Q16φ: C2/C1C2 ⊆ Out Q8×C28448(Q8xC28).9C2448,565
(Q8×C28).10C2 = Q8×Dic14φ: C2/C1C2 ⊆ Out Q8×C28448(Q8xC28).10C2448,1019
(Q8×C28).11C2 = Dic1410Q8φ: C2/C1C2 ⊆ Out Q8×C28448(Q8xC28).11C2448,1020
(Q8×C28).12C2 = Q85Dic14φ: C2/C1C2 ⊆ Out Q8×C28448(Q8xC28).12C2448,1022
(Q8×C28).13C2 = Q86Dic14φ: C2/C1C2 ⊆ Out Q8×C28448(Q8xC28).13C2448,1023
(Q8×C28).14C2 = C7×Q8⋊C8φ: C2/C1C2 ⊆ Out Q8×C28448(Q8xC28).14C2448,130
(Q8×C28).15C2 = Q16×C28φ: C2/C1C2 ⊆ Out Q8×C28448(Q8xC28).15C2448,847
(Q8×C28).16C2 = C7×Q16⋊C4φ: C2/C1C2 ⊆ Out Q8×C28448(Q8xC28).16C2448,849
(Q8×C28).17C2 = C7×C84Q8φ: C2/C1C2 ⊆ Out Q8×C28448(Q8xC28).17C2448,854
(Q8×C28).18C2 = C7×C42Q16φ: C2/C1C2 ⊆ Out Q8×C28448(Q8xC28).18C2448,870
(Q8×C28).19C2 = C7×Q8⋊Q8φ: C2/C1C2 ⊆ Out Q8×C28448(Q8xC28).19C2448,883
(Q8×C28).20C2 = C7×C4.Q16φ: C2/C1C2 ⊆ Out Q8×C28448(Q8xC28).20C2448,885
(Q8×C28).21C2 = C7×Q8.Q8φ: C2/C1C2 ⊆ Out Q8×C28448(Q8xC28).21C2448,887
(Q8×C28).22C2 = C7×Q83Q8φ: C2/C1C2 ⊆ Out Q8×C28448(Q8xC28).22C2448,1340
(Q8×C28).23C2 = C7×Q82φ: C2/C1C2 ⊆ Out Q8×C28448(Q8xC28).23C2448,1341
(Q8×C28).24C2 = Q8×C56φ: trivial image448(Q8xC28).24C2448,853

׿
×
𝔽