Copied to
clipboard

G = Q85D28order 448 = 26·7

1st semidirect product of Q8 and D28 acting through Inn(Q8)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Q85D28, C42.128D14, C14.112- 1+4, (C4×Q8)⋊9D7, (C7×Q8)⋊10D4, (C4×D28)⋊38C2, (Q8×C28)⋊11C2, C72(Q85D4), C28.57(C2×D4), C4.25(C2×D28), C4⋊D2817C2, C4⋊C4.295D14, D1413(C4○D4), D142Q818C2, C4.D2820C2, D14⋊C4.6C22, (C2×Q8).204D14, C14.19(C22×D4), C2.21(C22×D28), (C4×C28).172C22, (C2×C14).120C24, (C2×C28).498C23, (C2×D28).216C22, C4⋊Dic7.306C22, (Q8×C14).220C22, (C2×Dic7).54C23, (C22×D7).45C23, C22.141(C23×D7), C2.12(Q8.10D14), (C2×Dic14).149C22, (C2×Q8×D7)⋊4C2, C2.29(D7×C4○D4), (C2×Q82D7)⋊3C2, (C2×C4×D7).72C22, C14.145(C2×C4○D4), (C7×C4⋊C4).348C22, (C2×C4).168(C22×D7), SmallGroup(448,1029)

Series: Derived Chief Lower central Upper central

C1C2×C14 — Q85D28
C1C7C14C2×C14C22×D7C2×C4×D7C2×Q8×D7 — Q85D28
C7C2×C14 — Q85D28
C1C22C4×Q8

Generators and relations for Q85D28
 G = < a,b,c,d | a4=c28=d2=1, b2=a2, bab-1=a-1, ac=ca, ad=da, cbc-1=dbd=a2b, dcd=c-1 >

Subgroups: 1476 in 290 conjugacy classes, 113 normal (22 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C2×C4, C2×C4, C2×C4, D4, Q8, Q8, C23, D7, C14, C42, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Q8, C2×Q8, C4○D4, Dic7, C28, C28, D14, D14, C2×C14, C4×D4, C4×Q8, C4⋊D4, C22⋊Q8, C4.4D4, C22×Q8, C2×C4○D4, Dic14, C4×D7, D28, C2×Dic7, C2×Dic7, C2×C28, C2×C28, C7×Q8, C22×D7, C22×D7, Q85D4, C4⋊Dic7, D14⋊C4, D14⋊C4, C4×C28, C7×C4⋊C4, C2×Dic14, C2×C4×D7, C2×D28, Q8×D7, Q82D7, Q8×C14, C4×D28, C4.D28, C4⋊D28, D142Q8, Q8×C28, C2×Q8×D7, C2×Q82D7, Q85D28
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C4○D4, C24, D14, C22×D4, C2×C4○D4, 2- 1+4, D28, C22×D7, Q85D4, C2×D28, C23×D7, C22×D28, Q8.10D14, D7×C4○D4, Q85D28

Smallest permutation representation of Q85D28
On 224 points
Generators in S224
(1 47 102 194)(2 48 103 195)(3 49 104 196)(4 50 105 169)(5 51 106 170)(6 52 107 171)(7 53 108 172)(8 54 109 173)(9 55 110 174)(10 56 111 175)(11 29 112 176)(12 30 85 177)(13 31 86 178)(14 32 87 179)(15 33 88 180)(16 34 89 181)(17 35 90 182)(18 36 91 183)(19 37 92 184)(20 38 93 185)(21 39 94 186)(22 40 95 187)(23 41 96 188)(24 42 97 189)(25 43 98 190)(26 44 99 191)(27 45 100 192)(28 46 101 193)(57 221 152 125)(58 222 153 126)(59 223 154 127)(60 224 155 128)(61 197 156 129)(62 198 157 130)(63 199 158 131)(64 200 159 132)(65 201 160 133)(66 202 161 134)(67 203 162 135)(68 204 163 136)(69 205 164 137)(70 206 165 138)(71 207 166 139)(72 208 167 140)(73 209 168 113)(74 210 141 114)(75 211 142 115)(76 212 143 116)(77 213 144 117)(78 214 145 118)(79 215 146 119)(80 216 147 120)(81 217 148 121)(82 218 149 122)(83 219 150 123)(84 220 151 124)
(1 117 102 213)(2 214 103 118)(3 119 104 215)(4 216 105 120)(5 121 106 217)(6 218 107 122)(7 123 108 219)(8 220 109 124)(9 125 110 221)(10 222 111 126)(11 127 112 223)(12 224 85 128)(13 129 86 197)(14 198 87 130)(15 131 88 199)(16 200 89 132)(17 133 90 201)(18 202 91 134)(19 135 92 203)(20 204 93 136)(21 137 94 205)(22 206 95 138)(23 139 96 207)(24 208 97 140)(25 113 98 209)(26 210 99 114)(27 115 100 211)(28 212 101 116)(29 154 176 59)(30 60 177 155)(31 156 178 61)(32 62 179 157)(33 158 180 63)(34 64 181 159)(35 160 182 65)(36 66 183 161)(37 162 184 67)(38 68 185 163)(39 164 186 69)(40 70 187 165)(41 166 188 71)(42 72 189 167)(43 168 190 73)(44 74 191 141)(45 142 192 75)(46 76 193 143)(47 144 194 77)(48 78 195 145)(49 146 196 79)(50 80 169 147)(51 148 170 81)(52 82 171 149)(53 150 172 83)(54 84 173 151)(55 152 174 57)(56 58 175 153)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196)(197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 101)(2 100)(3 99)(4 98)(5 97)(6 96)(7 95)(8 94)(9 93)(10 92)(11 91)(12 90)(13 89)(14 88)(15 87)(16 86)(17 85)(18 112)(19 111)(20 110)(21 109)(22 108)(23 107)(24 106)(25 105)(26 104)(27 103)(28 102)(29 183)(30 182)(31 181)(32 180)(33 179)(34 178)(35 177)(36 176)(37 175)(38 174)(39 173)(40 172)(41 171)(42 170)(43 169)(44 196)(45 195)(46 194)(47 193)(48 192)(49 191)(50 190)(51 189)(52 188)(53 187)(54 186)(55 185)(56 184)(57 163)(58 162)(59 161)(60 160)(61 159)(62 158)(63 157)(64 156)(65 155)(66 154)(67 153)(68 152)(69 151)(70 150)(71 149)(72 148)(73 147)(74 146)(75 145)(76 144)(77 143)(78 142)(79 141)(80 168)(81 167)(82 166)(83 165)(84 164)(113 216)(114 215)(115 214)(116 213)(117 212)(118 211)(119 210)(120 209)(121 208)(122 207)(123 206)(124 205)(125 204)(126 203)(127 202)(128 201)(129 200)(130 199)(131 198)(132 197)(133 224)(134 223)(135 222)(136 221)(137 220)(138 219)(139 218)(140 217)

G:=sub<Sym(224)| (1,47,102,194)(2,48,103,195)(3,49,104,196)(4,50,105,169)(5,51,106,170)(6,52,107,171)(7,53,108,172)(8,54,109,173)(9,55,110,174)(10,56,111,175)(11,29,112,176)(12,30,85,177)(13,31,86,178)(14,32,87,179)(15,33,88,180)(16,34,89,181)(17,35,90,182)(18,36,91,183)(19,37,92,184)(20,38,93,185)(21,39,94,186)(22,40,95,187)(23,41,96,188)(24,42,97,189)(25,43,98,190)(26,44,99,191)(27,45,100,192)(28,46,101,193)(57,221,152,125)(58,222,153,126)(59,223,154,127)(60,224,155,128)(61,197,156,129)(62,198,157,130)(63,199,158,131)(64,200,159,132)(65,201,160,133)(66,202,161,134)(67,203,162,135)(68,204,163,136)(69,205,164,137)(70,206,165,138)(71,207,166,139)(72,208,167,140)(73,209,168,113)(74,210,141,114)(75,211,142,115)(76,212,143,116)(77,213,144,117)(78,214,145,118)(79,215,146,119)(80,216,147,120)(81,217,148,121)(82,218,149,122)(83,219,150,123)(84,220,151,124), (1,117,102,213)(2,214,103,118)(3,119,104,215)(4,216,105,120)(5,121,106,217)(6,218,107,122)(7,123,108,219)(8,220,109,124)(9,125,110,221)(10,222,111,126)(11,127,112,223)(12,224,85,128)(13,129,86,197)(14,198,87,130)(15,131,88,199)(16,200,89,132)(17,133,90,201)(18,202,91,134)(19,135,92,203)(20,204,93,136)(21,137,94,205)(22,206,95,138)(23,139,96,207)(24,208,97,140)(25,113,98,209)(26,210,99,114)(27,115,100,211)(28,212,101,116)(29,154,176,59)(30,60,177,155)(31,156,178,61)(32,62,179,157)(33,158,180,63)(34,64,181,159)(35,160,182,65)(36,66,183,161)(37,162,184,67)(38,68,185,163)(39,164,186,69)(40,70,187,165)(41,166,188,71)(42,72,189,167)(43,168,190,73)(44,74,191,141)(45,142,192,75)(46,76,193,143)(47,144,194,77)(48,78,195,145)(49,146,196,79)(50,80,169,147)(51,148,170,81)(52,82,171,149)(53,150,172,83)(54,84,173,151)(55,152,174,57)(56,58,175,153), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,101)(2,100)(3,99)(4,98)(5,97)(6,96)(7,95)(8,94)(9,93)(10,92)(11,91)(12,90)(13,89)(14,88)(15,87)(16,86)(17,85)(18,112)(19,111)(20,110)(21,109)(22,108)(23,107)(24,106)(25,105)(26,104)(27,103)(28,102)(29,183)(30,182)(31,181)(32,180)(33,179)(34,178)(35,177)(36,176)(37,175)(38,174)(39,173)(40,172)(41,171)(42,170)(43,169)(44,196)(45,195)(46,194)(47,193)(48,192)(49,191)(50,190)(51,189)(52,188)(53,187)(54,186)(55,185)(56,184)(57,163)(58,162)(59,161)(60,160)(61,159)(62,158)(63,157)(64,156)(65,155)(66,154)(67,153)(68,152)(69,151)(70,150)(71,149)(72,148)(73,147)(74,146)(75,145)(76,144)(77,143)(78,142)(79,141)(80,168)(81,167)(82,166)(83,165)(84,164)(113,216)(114,215)(115,214)(116,213)(117,212)(118,211)(119,210)(120,209)(121,208)(122,207)(123,206)(124,205)(125,204)(126,203)(127,202)(128,201)(129,200)(130,199)(131,198)(132,197)(133,224)(134,223)(135,222)(136,221)(137,220)(138,219)(139,218)(140,217)>;

G:=Group( (1,47,102,194)(2,48,103,195)(3,49,104,196)(4,50,105,169)(5,51,106,170)(6,52,107,171)(7,53,108,172)(8,54,109,173)(9,55,110,174)(10,56,111,175)(11,29,112,176)(12,30,85,177)(13,31,86,178)(14,32,87,179)(15,33,88,180)(16,34,89,181)(17,35,90,182)(18,36,91,183)(19,37,92,184)(20,38,93,185)(21,39,94,186)(22,40,95,187)(23,41,96,188)(24,42,97,189)(25,43,98,190)(26,44,99,191)(27,45,100,192)(28,46,101,193)(57,221,152,125)(58,222,153,126)(59,223,154,127)(60,224,155,128)(61,197,156,129)(62,198,157,130)(63,199,158,131)(64,200,159,132)(65,201,160,133)(66,202,161,134)(67,203,162,135)(68,204,163,136)(69,205,164,137)(70,206,165,138)(71,207,166,139)(72,208,167,140)(73,209,168,113)(74,210,141,114)(75,211,142,115)(76,212,143,116)(77,213,144,117)(78,214,145,118)(79,215,146,119)(80,216,147,120)(81,217,148,121)(82,218,149,122)(83,219,150,123)(84,220,151,124), (1,117,102,213)(2,214,103,118)(3,119,104,215)(4,216,105,120)(5,121,106,217)(6,218,107,122)(7,123,108,219)(8,220,109,124)(9,125,110,221)(10,222,111,126)(11,127,112,223)(12,224,85,128)(13,129,86,197)(14,198,87,130)(15,131,88,199)(16,200,89,132)(17,133,90,201)(18,202,91,134)(19,135,92,203)(20,204,93,136)(21,137,94,205)(22,206,95,138)(23,139,96,207)(24,208,97,140)(25,113,98,209)(26,210,99,114)(27,115,100,211)(28,212,101,116)(29,154,176,59)(30,60,177,155)(31,156,178,61)(32,62,179,157)(33,158,180,63)(34,64,181,159)(35,160,182,65)(36,66,183,161)(37,162,184,67)(38,68,185,163)(39,164,186,69)(40,70,187,165)(41,166,188,71)(42,72,189,167)(43,168,190,73)(44,74,191,141)(45,142,192,75)(46,76,193,143)(47,144,194,77)(48,78,195,145)(49,146,196,79)(50,80,169,147)(51,148,170,81)(52,82,171,149)(53,150,172,83)(54,84,173,151)(55,152,174,57)(56,58,175,153), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,101)(2,100)(3,99)(4,98)(5,97)(6,96)(7,95)(8,94)(9,93)(10,92)(11,91)(12,90)(13,89)(14,88)(15,87)(16,86)(17,85)(18,112)(19,111)(20,110)(21,109)(22,108)(23,107)(24,106)(25,105)(26,104)(27,103)(28,102)(29,183)(30,182)(31,181)(32,180)(33,179)(34,178)(35,177)(36,176)(37,175)(38,174)(39,173)(40,172)(41,171)(42,170)(43,169)(44,196)(45,195)(46,194)(47,193)(48,192)(49,191)(50,190)(51,189)(52,188)(53,187)(54,186)(55,185)(56,184)(57,163)(58,162)(59,161)(60,160)(61,159)(62,158)(63,157)(64,156)(65,155)(66,154)(67,153)(68,152)(69,151)(70,150)(71,149)(72,148)(73,147)(74,146)(75,145)(76,144)(77,143)(78,142)(79,141)(80,168)(81,167)(82,166)(83,165)(84,164)(113,216)(114,215)(115,214)(116,213)(117,212)(118,211)(119,210)(120,209)(121,208)(122,207)(123,206)(124,205)(125,204)(126,203)(127,202)(128,201)(129,200)(130,199)(131,198)(132,197)(133,224)(134,223)(135,222)(136,221)(137,220)(138,219)(139,218)(140,217) );

G=PermutationGroup([[(1,47,102,194),(2,48,103,195),(3,49,104,196),(4,50,105,169),(5,51,106,170),(6,52,107,171),(7,53,108,172),(8,54,109,173),(9,55,110,174),(10,56,111,175),(11,29,112,176),(12,30,85,177),(13,31,86,178),(14,32,87,179),(15,33,88,180),(16,34,89,181),(17,35,90,182),(18,36,91,183),(19,37,92,184),(20,38,93,185),(21,39,94,186),(22,40,95,187),(23,41,96,188),(24,42,97,189),(25,43,98,190),(26,44,99,191),(27,45,100,192),(28,46,101,193),(57,221,152,125),(58,222,153,126),(59,223,154,127),(60,224,155,128),(61,197,156,129),(62,198,157,130),(63,199,158,131),(64,200,159,132),(65,201,160,133),(66,202,161,134),(67,203,162,135),(68,204,163,136),(69,205,164,137),(70,206,165,138),(71,207,166,139),(72,208,167,140),(73,209,168,113),(74,210,141,114),(75,211,142,115),(76,212,143,116),(77,213,144,117),(78,214,145,118),(79,215,146,119),(80,216,147,120),(81,217,148,121),(82,218,149,122),(83,219,150,123),(84,220,151,124)], [(1,117,102,213),(2,214,103,118),(3,119,104,215),(4,216,105,120),(5,121,106,217),(6,218,107,122),(7,123,108,219),(8,220,109,124),(9,125,110,221),(10,222,111,126),(11,127,112,223),(12,224,85,128),(13,129,86,197),(14,198,87,130),(15,131,88,199),(16,200,89,132),(17,133,90,201),(18,202,91,134),(19,135,92,203),(20,204,93,136),(21,137,94,205),(22,206,95,138),(23,139,96,207),(24,208,97,140),(25,113,98,209),(26,210,99,114),(27,115,100,211),(28,212,101,116),(29,154,176,59),(30,60,177,155),(31,156,178,61),(32,62,179,157),(33,158,180,63),(34,64,181,159),(35,160,182,65),(36,66,183,161),(37,162,184,67),(38,68,185,163),(39,164,186,69),(40,70,187,165),(41,166,188,71),(42,72,189,167),(43,168,190,73),(44,74,191,141),(45,142,192,75),(46,76,193,143),(47,144,194,77),(48,78,195,145),(49,146,196,79),(50,80,169,147),(51,148,170,81),(52,82,171,149),(53,150,172,83),(54,84,173,151),(55,152,174,57),(56,58,175,153)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196),(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,101),(2,100),(3,99),(4,98),(5,97),(6,96),(7,95),(8,94),(9,93),(10,92),(11,91),(12,90),(13,89),(14,88),(15,87),(16,86),(17,85),(18,112),(19,111),(20,110),(21,109),(22,108),(23,107),(24,106),(25,105),(26,104),(27,103),(28,102),(29,183),(30,182),(31,181),(32,180),(33,179),(34,178),(35,177),(36,176),(37,175),(38,174),(39,173),(40,172),(41,171),(42,170),(43,169),(44,196),(45,195),(46,194),(47,193),(48,192),(49,191),(50,190),(51,189),(52,188),(53,187),(54,186),(55,185),(56,184),(57,163),(58,162),(59,161),(60,160),(61,159),(62,158),(63,157),(64,156),(65,155),(66,154),(67,153),(68,152),(69,151),(70,150),(71,149),(72,148),(73,147),(74,146),(75,145),(76,144),(77,143),(78,142),(79,141),(80,168),(81,167),(82,166),(83,165),(84,164),(113,216),(114,215),(115,214),(116,213),(117,212),(118,211),(119,210),(120,209),(121,208),(122,207),(123,206),(124,205),(125,204),(126,203),(127,202),(128,201),(129,200),(130,199),(131,198),(132,197),(133,224),(134,223),(135,222),(136,221),(137,220),(138,219),(139,218),(140,217)]])

85 conjugacy classes

class 1 2A2B2C2D2E2F2G2H4A···4H4I4J4K4L4M4N4O4P7A7B7C14A···14I28A···28L28M···28AV
order1222222224···44444444477714···1428···2828···28
size111114142828282···244414142828282222···22···24···4

85 irreducible representations

dim111111112222222444
type++++++++++++++-
imageC1C2C2C2C2C2C2C2D4D7C4○D4D14D14D14D282- 1+4Q8.10D14D7×C4○D4
kernelQ85D28C4×D28C4.D28C4⋊D28D142Q8Q8×C28C2×Q8×D7C2×Q82D7C7×Q8C4×Q8D14C42C4⋊C4C2×Q8Q8C14C2C2
# reps1333311143499324166

Matrix representation of Q85D28 in GL6(𝔽29)

2800000
0280000
0028000
0002800
0000127
0000128
,
2800000
0280000
001000
000100
00002722
000092
,
10110000
12220000
0002800
001000
00001724
00001712
,
1910000
17100000
0002800
0028000
0000125
00001217

G:=sub<GL(6,GF(29))| [28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,1,1,0,0,0,0,27,28],[28,0,0,0,0,0,0,28,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,27,9,0,0,0,0,22,2],[10,12,0,0,0,0,11,22,0,0,0,0,0,0,0,1,0,0,0,0,28,0,0,0,0,0,0,0,17,17,0,0,0,0,24,12],[19,17,0,0,0,0,1,10,0,0,0,0,0,0,0,28,0,0,0,0,28,0,0,0,0,0,0,0,12,12,0,0,0,0,5,17] >;

Q85D28 in GAP, Magma, Sage, TeX

Q_8\rtimes_5D_{28}
% in TeX

G:=Group("Q8:5D28");
// GroupNames label

G:=SmallGroup(448,1029);
// by ID

G=gap.SmallGroup(448,1029);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,232,387,184,675,192,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^4=c^28=d^2=1,b^2=a^2,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽