Extensions 1→N→G→Q→1 with N=C2xC112 and Q=C2

Direct product G=NxQ with N=C2xC112 and Q=C2
dρLabelID
C22xC112448C2^2xC112448,910

Semidirect products G=N:Q with N=C2xC112 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C2xC112):1C2 = D14:C16φ: C2/C1C2 ⊆ Aut C2xC112224(C2xC112):1C2448,64
(C2xC112):2C2 = D28.C8φ: C2/C1C2 ⊆ Aut C2xC1122242(C2xC112):2C2448,65
(C2xC112):3C2 = C2.D112φ: C2/C1C2 ⊆ Aut C2xC112224(C2xC112):3C2448,66
(C2xC112):4C2 = D56.1C4φ: C2/C1C2 ⊆ Aut C2xC1122242(C2xC112):4C2448,67
(C2xC112):5C2 = C7xC22:C16φ: C2/C1C2 ⊆ Aut C2xC112224(C2xC112):5C2448,152
(C2xC112):6C2 = C7xD4.C8φ: C2/C1C2 ⊆ Aut C2xC1122242(C2xC112):6C2448,154
(C2xC112):7C2 = C7xC2.D16φ: C2/C1C2 ⊆ Aut C2xC112224(C2xC112):7C2448,161
(C2xC112):8C2 = C7xD8.C4φ: C2/C1C2 ⊆ Aut C2xC1122242(C2xC112):8C2448,163
(C2xC112):9C2 = C2xD112φ: C2/C1C2 ⊆ Aut C2xC112224(C2xC112):9C2448,436
(C2xC112):10C2 = D112:7C2φ: C2/C1C2 ⊆ Aut C2xC1122242(C2xC112):10C2448,438
(C2xC112):11C2 = C2xC112:C2φ: C2/C1C2 ⊆ Aut C2xC112224(C2xC112):11C2448,437
(C2xC112):12C2 = C14xD16φ: C2/C1C2 ⊆ Aut C2xC112224(C2xC112):12C2448,913
(C2xC112):13C2 = C7xC4oD16φ: C2/C1C2 ⊆ Aut C2xC1122242(C2xC112):13C2448,916
(C2xC112):14C2 = D7xC2xC16φ: C2/C1C2 ⊆ Aut C2xC112224(C2xC112):14C2448,433
(C2xC112):15C2 = C2xC16:D7φ: C2/C1C2 ⊆ Aut C2xC112224(C2xC112):15C2448,434
(C2xC112):16C2 = D28.4C8φ: C2/C1C2 ⊆ Aut C2xC1122242(C2xC112):16C2448,435
(C2xC112):17C2 = C14xSD32φ: C2/C1C2 ⊆ Aut C2xC112224(C2xC112):17C2448,914
(C2xC112):18C2 = C14xM5(2)φ: C2/C1C2 ⊆ Aut C2xC112224(C2xC112):18C2448,911
(C2xC112):19C2 = C7xD4oC16φ: C2/C1C2 ⊆ Aut C2xC1122242(C2xC112):19C2448,912

Non-split extensions G=N.Q with N=C2xC112 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C2xC112).1C2 = Dic7:C16φ: C2/C1C2 ⊆ Aut C2xC112448(C2xC112).1C2448,58
(C2xC112).2C2 = C56.78D4φ: C2/C1C2 ⊆ Aut C2xC112448(C2xC112).2C2448,60
(C2xC112).3C2 = C7xC2.Q32φ: C2/C1C2 ⊆ Aut C2xC112448(C2xC112).3C2448,162
(C2xC112).4C2 = C7xC4:C16φ: C2/C1C2 ⊆ Aut C2xC112448(C2xC112).4C2448,167
(C2xC112).5C2 = C112:5C4φ: C2/C1C2 ⊆ Aut C2xC112448(C2xC112).5C2448,61
(C2xC112).6C2 = C2xDic56φ: C2/C1C2 ⊆ Aut C2xC112448(C2xC112).6C2448,439
(C2xC112).7C2 = C112.C4φ: C2/C1C2 ⊆ Aut C2xC1122242(C2xC112).7C2448,63
(C2xC112).8C2 = C112:6C4φ: C2/C1C2 ⊆ Aut C2xC112448(C2xC112).8C2448,62
(C2xC112).9C2 = C7xC16:3C4φ: C2/C1C2 ⊆ Aut C2xC112448(C2xC112).9C2448,170
(C2xC112).10C2 = C14xQ32φ: C2/C1C2 ⊆ Aut C2xC112448(C2xC112).10C2448,915
(C2xC112).11C2 = C7xC8.4Q8φ: C2/C1C2 ⊆ Aut C2xC1122242(C2xC112).11C2448,172
(C2xC112).12C2 = C2xC7:C32φ: C2/C1C2 ⊆ Aut C2xC112448(C2xC112).12C2448,55
(C2xC112).13C2 = C7:M6(2)φ: C2/C1C2 ⊆ Aut C2xC1122242(C2xC112).13C2448,56
(C2xC112).14C2 = C16xDic7φ: C2/C1C2 ⊆ Aut C2xC112448(C2xC112).14C2448,57
(C2xC112).15C2 = C112:9C4φ: C2/C1C2 ⊆ Aut C2xC112448(C2xC112).15C2448,59
(C2xC112).16C2 = C7xC16:4C4φ: C2/C1C2 ⊆ Aut C2xC112448(C2xC112).16C2448,171
(C2xC112).17C2 = C7xC16:5C4φ: C2/C1C2 ⊆ Aut C2xC112448(C2xC112).17C2448,150
(C2xC112).18C2 = C7xM6(2)φ: C2/C1C2 ⊆ Aut C2xC1122242(C2xC112).18C2448,174

׿
x
:
Z
F
o
wr
Q
<