Copied to
clipboard

G = C2×C112order 224 = 25·7

Abelian group of type [2,112]

direct product, abelian, monomial, 2-elementary

Aliases: C2×C112, SmallGroup(224,58)

Series: Derived Chief Lower central Upper central

C1 — C2×C112
C1C2C4C8C56C112 — C2×C112
C1 — C2×C112
C1 — C2×C112

Generators and relations for C2×C112
 G = < a,b | a2=b112=1, ab=ba >


Smallest permutation representation of C2×C112
Regular action on 224 points
Generators in S224
(1 156)(2 157)(3 158)(4 159)(5 160)(6 161)(7 162)(8 163)(9 164)(10 165)(11 166)(12 167)(13 168)(14 169)(15 170)(16 171)(17 172)(18 173)(19 174)(20 175)(21 176)(22 177)(23 178)(24 179)(25 180)(26 181)(27 182)(28 183)(29 184)(30 185)(31 186)(32 187)(33 188)(34 189)(35 190)(36 191)(37 192)(38 193)(39 194)(40 195)(41 196)(42 197)(43 198)(44 199)(45 200)(46 201)(47 202)(48 203)(49 204)(50 205)(51 206)(52 207)(53 208)(54 209)(55 210)(56 211)(57 212)(58 213)(59 214)(60 215)(61 216)(62 217)(63 218)(64 219)(65 220)(66 221)(67 222)(68 223)(69 224)(70 113)(71 114)(72 115)(73 116)(74 117)(75 118)(76 119)(77 120)(78 121)(79 122)(80 123)(81 124)(82 125)(83 126)(84 127)(85 128)(86 129)(87 130)(88 131)(89 132)(90 133)(91 134)(92 135)(93 136)(94 137)(95 138)(96 139)(97 140)(98 141)(99 142)(100 143)(101 144)(102 145)(103 146)(104 147)(105 148)(106 149)(107 150)(108 151)(109 152)(110 153)(111 154)(112 155)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224)

G:=sub<Sym(224)| (1,156)(2,157)(3,158)(4,159)(5,160)(6,161)(7,162)(8,163)(9,164)(10,165)(11,166)(12,167)(13,168)(14,169)(15,170)(16,171)(17,172)(18,173)(19,174)(20,175)(21,176)(22,177)(23,178)(24,179)(25,180)(26,181)(27,182)(28,183)(29,184)(30,185)(31,186)(32,187)(33,188)(34,189)(35,190)(36,191)(37,192)(38,193)(39,194)(40,195)(41,196)(42,197)(43,198)(44,199)(45,200)(46,201)(47,202)(48,203)(49,204)(50,205)(51,206)(52,207)(53,208)(54,209)(55,210)(56,211)(57,212)(58,213)(59,214)(60,215)(61,216)(62,217)(63,218)(64,219)(65,220)(66,221)(67,222)(68,223)(69,224)(70,113)(71,114)(72,115)(73,116)(74,117)(75,118)(76,119)(77,120)(78,121)(79,122)(80,123)(81,124)(82,125)(83,126)(84,127)(85,128)(86,129)(87,130)(88,131)(89,132)(90,133)(91,134)(92,135)(93,136)(94,137)(95,138)(96,139)(97,140)(98,141)(99,142)(100,143)(101,144)(102,145)(103,146)(104,147)(105,148)(106,149)(107,150)(108,151)(109,152)(110,153)(111,154)(112,155), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224)>;

G:=Group( (1,156)(2,157)(3,158)(4,159)(5,160)(6,161)(7,162)(8,163)(9,164)(10,165)(11,166)(12,167)(13,168)(14,169)(15,170)(16,171)(17,172)(18,173)(19,174)(20,175)(21,176)(22,177)(23,178)(24,179)(25,180)(26,181)(27,182)(28,183)(29,184)(30,185)(31,186)(32,187)(33,188)(34,189)(35,190)(36,191)(37,192)(38,193)(39,194)(40,195)(41,196)(42,197)(43,198)(44,199)(45,200)(46,201)(47,202)(48,203)(49,204)(50,205)(51,206)(52,207)(53,208)(54,209)(55,210)(56,211)(57,212)(58,213)(59,214)(60,215)(61,216)(62,217)(63,218)(64,219)(65,220)(66,221)(67,222)(68,223)(69,224)(70,113)(71,114)(72,115)(73,116)(74,117)(75,118)(76,119)(77,120)(78,121)(79,122)(80,123)(81,124)(82,125)(83,126)(84,127)(85,128)(86,129)(87,130)(88,131)(89,132)(90,133)(91,134)(92,135)(93,136)(94,137)(95,138)(96,139)(97,140)(98,141)(99,142)(100,143)(101,144)(102,145)(103,146)(104,147)(105,148)(106,149)(107,150)(108,151)(109,152)(110,153)(111,154)(112,155), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224) );

G=PermutationGroup([(1,156),(2,157),(3,158),(4,159),(5,160),(6,161),(7,162),(8,163),(9,164),(10,165),(11,166),(12,167),(13,168),(14,169),(15,170),(16,171),(17,172),(18,173),(19,174),(20,175),(21,176),(22,177),(23,178),(24,179),(25,180),(26,181),(27,182),(28,183),(29,184),(30,185),(31,186),(32,187),(33,188),(34,189),(35,190),(36,191),(37,192),(38,193),(39,194),(40,195),(41,196),(42,197),(43,198),(44,199),(45,200),(46,201),(47,202),(48,203),(49,204),(50,205),(51,206),(52,207),(53,208),(54,209),(55,210),(56,211),(57,212),(58,213),(59,214),(60,215),(61,216),(62,217),(63,218),(64,219),(65,220),(66,221),(67,222),(68,223),(69,224),(70,113),(71,114),(72,115),(73,116),(74,117),(75,118),(76,119),(77,120),(78,121),(79,122),(80,123),(81,124),(82,125),(83,126),(84,127),(85,128),(86,129),(87,130),(88,131),(89,132),(90,133),(91,134),(92,135),(93,136),(94,137),(95,138),(96,139),(97,140),(98,141),(99,142),(100,143),(101,144),(102,145),(103,146),(104,147),(105,148),(106,149),(107,150),(108,151),(109,152),(110,153),(111,154),(112,155)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224)])

C2×C112 is a maximal subgroup of
C7⋊M6(2)  Dic7⋊C16  C1129C4  C56.78D4  C1125C4  C1126C4  C112.C4  D14⋊C16  D28.C8  C2.D112  D56.1C4  D28.4C8  D1127C2

224 conjugacy classes

class 1 2A2B2C4A4B4C4D7A···7F8A···8H14A···14R16A···16P28A···28X56A···56AV112A···112CR
order122244447···78···814···1416···1628···2856···56112···112
size111111111···11···11···11···11···11···11···1

224 irreducible representations

dim1111111111111111
type+++
imageC1C2C2C4C4C7C8C8C14C14C16C28C28C56C56C112
kernelC2×C112C112C2×C56C56C2×C28C2×C16C28C2×C14C16C2×C8C14C8C2×C4C4C22C2
# reps12122644126161212242496

Matrix representation of C2×C112 in GL2(𝔽113) generated by

1120
0112
,
120
014
G:=sub<GL(2,GF(113))| [112,0,0,112],[12,0,0,14] >;

C2×C112 in GAP, Magma, Sage, TeX

C_2\times C_{112}
% in TeX

G:=Group("C2xC112");
// GroupNames label

G:=SmallGroup(224,58);
// by ID

G=gap.SmallGroup(224,58);
# by ID

G:=PCGroup([6,-2,-2,-7,-2,-2,-2,168,69,88]);
// Polycyclic

G:=Group<a,b|a^2=b^112=1,a*b=b*a>;
// generators/relations

Export

Subgroup lattice of C2×C112 in TeX

׿
×
𝔽