Extensions 1→N→G→Q→1 with N=C14×SD16 and Q=C2

Direct product G=N×Q with N=C14×SD16 and Q=C2
dρLabelID
SD16×C2×C14224SD16xC2xC14448,1353

Semidirect products G=N:Q with N=C14×SD16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C14×SD16)⋊1C2 = C56.44D4φ: C2/C1C2 ⊆ Out C14×SD161124(C14xSD16):1C2448,711
(C14×SD16)⋊2C2 = D28.29D4φ: C2/C1C2 ⊆ Out C14×SD161124(C14xSD16):2C2448,1215
(C14×SD16)⋊3C2 = C568D4φ: C2/C1C2 ⊆ Out C14×SD16224(C14xSD16):3C2448,708
(C14×SD16)⋊4C2 = C569D4φ: C2/C1C2 ⊆ Out C14×SD16224(C14xSD16):4C2448,710
(C14×SD16)⋊5C2 = C2×D56⋊C2φ: C2/C1C2 ⊆ Out C14×SD16112(C14xSD16):5C2448,1212
(C14×SD16)⋊6C2 = C2×SD16⋊D7φ: C2/C1C2 ⊆ Out C14×SD16224(C14xSD16):6C2448,1213
(C14×SD16)⋊7C2 = C56.43D4φ: C2/C1C2 ⊆ Out C14×SD16224(C14xSD16):7C2448,702
(C14×SD16)⋊8C2 = C5614D4φ: C2/C1C2 ⊆ Out C14×SD16224(C14xSD16):8C2448,705
(C14×SD16)⋊9C2 = C5615D4φ: C2/C1C2 ⊆ Out C14×SD16224(C14xSD16):9C2448,709
(C14×SD16)⋊10C2 = C2×D7×SD16φ: C2/C1C2 ⊆ Out C14×SD16112(C14xSD16):10C2448,1211
(C14×SD16)⋊11C2 = C2×SD163D7φ: C2/C1C2 ⊆ Out C14×SD16224(C14xSD16):11C2448,1214
(C14×SD16)⋊12C2 = C7×C8⋊D4φ: C2/C1C2 ⊆ Out C14×SD16224(C14xSD16):12C2448,876
(C14×SD16)⋊13C2 = C7×D4.3D4φ: C2/C1C2 ⊆ Out C14×SD161124(C14xSD16):13C2448,879
(C14×SD16)⋊14C2 = C7×C83D4φ: C2/C1C2 ⊆ Out C14×SD16224(C14xSD16):14C2448,904
(C14×SD16)⋊15C2 = C14×C8⋊C22φ: C2/C1C2 ⊆ Out C14×SD16112(C14xSD16):15C2448,1356
(C14×SD16)⋊16C2 = C14×C8.C22φ: C2/C1C2 ⊆ Out C14×SD16224(C14xSD16):16C2448,1357
(C14×SD16)⋊17C2 = C7×D4○SD16φ: C2/C1C2 ⊆ Out C14×SD161124(C14xSD16):17C2448,1360
(C14×SD16)⋊18C2 = Dic75SD16φ: C2/C1C2 ⊆ Out C14×SD16224(C14xSD16):18C2448,697
(C14×SD16)⋊19C2 = (C7×D4).D4φ: C2/C1C2 ⊆ Out C14×SD16224(C14xSD16):19C2448,699
(C14×SD16)⋊20C2 = D146SD16φ: C2/C1C2 ⊆ Out C14×SD16112(C14xSD16):20C2448,703
(C14×SD16)⋊21C2 = Dic147D4φ: C2/C1C2 ⊆ Out C14×SD16224(C14xSD16):21C2448,704
(C14×SD16)⋊22C2 = D287D4φ: C2/C1C2 ⊆ Out C14×SD16224(C14xSD16):22C2448,706
(C14×SD16)⋊23C2 = Dic14.16D4φ: C2/C1C2 ⊆ Out C14×SD16224(C14xSD16):23C2448,707
(C14×SD16)⋊24C2 = C7×Q8⋊D4φ: C2/C1C2 ⊆ Out C14×SD16224(C14xSD16):24C2448,856
(C14×SD16)⋊25C2 = C7×D4⋊D4φ: C2/C1C2 ⊆ Out C14×SD16224(C14xSD16):25C2448,857
(C14×SD16)⋊26C2 = C7×C22⋊SD16φ: C2/C1C2 ⊆ Out C14×SD16112(C14xSD16):26C2448,858
(C14×SD16)⋊27C2 = C7×D4.7D4φ: C2/C1C2 ⊆ Out C14×SD16224(C14xSD16):27C2448,860
(C14×SD16)⋊28C2 = C7×C4⋊SD16φ: C2/C1C2 ⊆ Out C14×SD16224(C14xSD16):28C2448,868
(C14×SD16)⋊29C2 = C7×D4.2D4φ: C2/C1C2 ⊆ Out C14×SD16224(C14xSD16):29C2448,871
(C14×SD16)⋊30C2 = C7×C88D4φ: C2/C1C2 ⊆ Out C14×SD16224(C14xSD16):30C2448,873
(C14×SD16)⋊31C2 = C7×C85D4φ: C2/C1C2 ⊆ Out C14×SD16224(C14xSD16):31C2448,900
(C14×SD16)⋊32C2 = C7×C8.12D4φ: C2/C1C2 ⊆ Out C14×SD16224(C14xSD16):32C2448,903
(C14×SD16)⋊33C2 = C14×C4○D8φ: trivial image224(C14xSD16):33C2448,1355

Non-split extensions G=N.Q with N=C14×SD16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C14×SD16).1C2 = SD16⋊Dic7φ: C2/C1C2 ⊆ Out C14×SD16224(C14xSD16).1C2448,698
(C14×SD16).2C2 = C56.31D4φ: C2/C1C2 ⊆ Out C14×SD16224(C14xSD16).2C2448,701
(C14×SD16).3C2 = SD16×Dic7φ: C2/C1C2 ⊆ Out C14×SD16224(C14xSD16).3C2448,695
(C14×SD16).4C2 = C7×SD16⋊C4φ: C2/C1C2 ⊆ Out C14×SD16224(C14xSD16).4C2448,848
(C14×SD16).5C2 = C7×C8.2D4φ: C2/C1C2 ⊆ Out C14×SD16224(C14xSD16).5C2448,905
(C14×SD16).6C2 = Dic73SD16φ: C2/C1C2 ⊆ Out C14×SD16224(C14xSD16).6C2448,696
(C14×SD16).7C2 = (C7×Q8).D4φ: C2/C1C2 ⊆ Out C14×SD16224(C14xSD16).7C2448,700
(C14×SD16).8C2 = C7×D4.D4φ: C2/C1C2 ⊆ Out C14×SD16224(C14xSD16).8C2448,869
(C14×SD16).9C2 = C7×Q8.D4φ: C2/C1C2 ⊆ Out C14×SD16224(C14xSD16).9C2448,872
(C14×SD16).10C2 = SD16×C28φ: trivial image224(C14xSD16).10C2448,846

׿
×
𝔽