Copied to
clipboard

G = Dic147D4order 448 = 26·7

7th semidirect product of Dic14 and D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Dic147D4, D148SD16, (C7×Q8)⋊5D4, C4.63(D4×D7), D14⋊C833C2, Q82(C7⋊D4), C74(Q8⋊D4), C28.48(C2×D4), (C2×SD16)⋊11D7, (C2×D4).72D14, C282D4.7C2, (C2×C8).147D14, C2.29(D7×SD16), C14.58C22≀C2, (C14×SD16)⋊21C2, Q8⋊Dic728C2, (C2×Q8).116D14, (C2×Dic7).72D4, C14.46(C2×SD16), (C22×D7).92D4, C22.267(D4×D7), C28.44D435C2, (C2×C28).447C23, (C2×C56).294C22, (D4×C14).96C22, (Q8×C14).76C22, C2.26(C23⋊D14), C2.29(SD16⋊D7), C14.49(C8.C22), C4⋊Dic7.174C22, (C2×Dic14).127C22, (C2×Q8×D7)⋊2C2, C4.43(C2×C7⋊D4), (C2×D4.D7)⋊20C2, (C2×C4×D7).48C22, (C2×C14).359(C2×D4), (C2×C7⋊C8).157C22, (C2×C4).536(C22×D7), SmallGroup(448,704)

Series: Derived Chief Lower central Upper central

C1C2×C28 — Dic147D4
C1C7C14C2×C14C2×C28C2×C4×D7C2×Q8×D7 — Dic147D4
C7C14C2×C28 — Dic147D4
C1C22C2×C4C2×SD16

Generators and relations for Dic147D4
 G = < a,b,c,d | a14=b2=c8=d2=1, bab=a-1, ac=ca, ad=da, cbc-1=dbd=a7b, dcd=c3 >

Subgroups: 836 in 158 conjugacy classes, 45 normal (37 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C2×C4, C2×C4, D4, Q8, Q8, C23, D7, C14, C14, C22⋊C4, C4⋊C4, C2×C8, C2×C8, SD16, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, Dic7, C28, C28, D14, D14, C2×C14, C2×C14, C22⋊C8, Q8⋊C4, C4⋊D4, C2×SD16, C2×SD16, C22×Q8, C7⋊C8, C56, Dic14, Dic14, C4×D7, C2×Dic7, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C7×D4, C7×Q8, C7×Q8, C22×D7, C22×C14, Q8⋊D4, C2×C7⋊C8, C4⋊Dic7, D4.D7, C23.D7, C2×C56, C7×SD16, C2×Dic14, C2×Dic14, C2×C4×D7, C2×C4×D7, Q8×D7, C2×C7⋊D4, D4×C14, Q8×C14, C28.44D4, D14⋊C8, Q8⋊Dic7, C2×D4.D7, C282D4, C14×SD16, C2×Q8×D7, Dic147D4
Quotients: C1, C2, C22, D4, C23, D7, SD16, C2×D4, D14, C22≀C2, C2×SD16, C8.C22, C7⋊D4, C22×D7, Q8⋊D4, D4×D7, C2×C7⋊D4, D7×SD16, SD16⋊D7, C23⋊D14, Dic147D4

Smallest permutation representation of Dic147D4
On 224 points
Generators in S224
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154)(155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182)(183 184 185 186 187 188 189 190 191 192 193 194 195 196)(197 198 199 200 201 202 203 204 205 206 207 208 209 210)(211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 14)(2 13)(3 12)(4 11)(5 10)(6 9)(7 8)(15 18)(16 17)(19 28)(20 27)(21 26)(22 25)(23 24)(29 42)(30 41)(31 40)(32 39)(33 38)(34 37)(35 36)(43 49)(44 48)(45 47)(50 56)(51 55)(52 54)(57 68)(58 67)(59 66)(60 65)(61 64)(62 63)(69 70)(71 77)(72 76)(73 75)(78 84)(79 83)(80 82)(85 97)(86 96)(87 95)(88 94)(89 93)(90 92)(99 102)(100 101)(103 112)(104 111)(105 110)(106 109)(107 108)(113 123)(114 122)(115 121)(116 120)(117 119)(124 126)(127 130)(128 129)(131 140)(132 139)(133 138)(134 137)(135 136)(141 142)(143 154)(144 153)(145 152)(146 151)(147 150)(148 149)(155 159)(156 158)(160 168)(161 167)(162 166)(163 165)(170 182)(171 181)(172 180)(173 179)(174 178)(175 177)(183 192)(184 191)(185 190)(186 189)(187 188)(193 196)(194 195)(197 199)(200 210)(201 209)(202 208)(203 207)(204 206)(211 221)(212 220)(213 219)(214 218)(215 217)(222 224)
(1 220 17 43 36 88 63 122)(2 221 18 44 37 89 64 123)(3 222 19 45 38 90 65 124)(4 223 20 46 39 91 66 125)(5 224 21 47 40 92 67 126)(6 211 22 48 41 93 68 113)(7 212 23 49 42 94 69 114)(8 213 24 50 29 95 70 115)(9 214 25 51 30 96 57 116)(10 215 26 52 31 97 58 117)(11 216 27 53 32 98 59 118)(12 217 28 54 33 85 60 119)(13 218 15 55 34 86 61 120)(14 219 16 56 35 87 62 121)(71 149 209 188 173 129 161 108)(72 150 210 189 174 130 162 109)(73 151 197 190 175 131 163 110)(74 152 198 191 176 132 164 111)(75 153 199 192 177 133 165 112)(76 154 200 193 178 134 166 99)(77 141 201 194 179 135 167 100)(78 142 202 195 180 136 168 101)(79 143 203 196 181 137 155 102)(80 144 204 183 182 138 156 103)(81 145 205 184 169 139 157 104)(82 146 206 185 170 140 158 105)(83 147 207 186 171 127 159 106)(84 148 208 187 172 128 160 107)
(1 168)(2 155)(3 156)(4 157)(5 158)(6 159)(7 160)(8 161)(9 162)(10 163)(11 164)(12 165)(13 166)(14 167)(15 178)(16 179)(17 180)(18 181)(19 182)(20 169)(21 170)(22 171)(23 172)(24 173)(25 174)(26 175)(27 176)(28 177)(29 209)(30 210)(31 197)(32 198)(33 199)(34 200)(35 201)(36 202)(37 203)(38 204)(39 205)(40 206)(41 207)(42 208)(43 101)(44 102)(45 103)(46 104)(47 105)(48 106)(49 107)(50 108)(51 109)(52 110)(53 111)(54 112)(55 99)(56 100)(57 72)(58 73)(59 74)(60 75)(61 76)(62 77)(63 78)(64 79)(65 80)(66 81)(67 82)(68 83)(69 84)(70 71)(85 133)(86 134)(87 135)(88 136)(89 137)(90 138)(91 139)(92 140)(93 127)(94 128)(95 129)(96 130)(97 131)(98 132)(113 186)(114 187)(115 188)(116 189)(117 190)(118 191)(119 192)(120 193)(121 194)(122 195)(123 196)(124 183)(125 184)(126 185)(141 219)(142 220)(143 221)(144 222)(145 223)(146 224)(147 211)(148 212)(149 213)(150 214)(151 215)(152 216)(153 217)(154 218)

G:=sub<Sym(224)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154)(155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182)(183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210)(211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,14)(2,13)(3,12)(4,11)(5,10)(6,9)(7,8)(15,18)(16,17)(19,28)(20,27)(21,26)(22,25)(23,24)(29,42)(30,41)(31,40)(32,39)(33,38)(34,37)(35,36)(43,49)(44,48)(45,47)(50,56)(51,55)(52,54)(57,68)(58,67)(59,66)(60,65)(61,64)(62,63)(69,70)(71,77)(72,76)(73,75)(78,84)(79,83)(80,82)(85,97)(86,96)(87,95)(88,94)(89,93)(90,92)(99,102)(100,101)(103,112)(104,111)(105,110)(106,109)(107,108)(113,123)(114,122)(115,121)(116,120)(117,119)(124,126)(127,130)(128,129)(131,140)(132,139)(133,138)(134,137)(135,136)(141,142)(143,154)(144,153)(145,152)(146,151)(147,150)(148,149)(155,159)(156,158)(160,168)(161,167)(162,166)(163,165)(170,182)(171,181)(172,180)(173,179)(174,178)(175,177)(183,192)(184,191)(185,190)(186,189)(187,188)(193,196)(194,195)(197,199)(200,210)(201,209)(202,208)(203,207)(204,206)(211,221)(212,220)(213,219)(214,218)(215,217)(222,224), (1,220,17,43,36,88,63,122)(2,221,18,44,37,89,64,123)(3,222,19,45,38,90,65,124)(4,223,20,46,39,91,66,125)(5,224,21,47,40,92,67,126)(6,211,22,48,41,93,68,113)(7,212,23,49,42,94,69,114)(8,213,24,50,29,95,70,115)(9,214,25,51,30,96,57,116)(10,215,26,52,31,97,58,117)(11,216,27,53,32,98,59,118)(12,217,28,54,33,85,60,119)(13,218,15,55,34,86,61,120)(14,219,16,56,35,87,62,121)(71,149,209,188,173,129,161,108)(72,150,210,189,174,130,162,109)(73,151,197,190,175,131,163,110)(74,152,198,191,176,132,164,111)(75,153,199,192,177,133,165,112)(76,154,200,193,178,134,166,99)(77,141,201,194,179,135,167,100)(78,142,202,195,180,136,168,101)(79,143,203,196,181,137,155,102)(80,144,204,183,182,138,156,103)(81,145,205,184,169,139,157,104)(82,146,206,185,170,140,158,105)(83,147,207,186,171,127,159,106)(84,148,208,187,172,128,160,107), (1,168)(2,155)(3,156)(4,157)(5,158)(6,159)(7,160)(8,161)(9,162)(10,163)(11,164)(12,165)(13,166)(14,167)(15,178)(16,179)(17,180)(18,181)(19,182)(20,169)(21,170)(22,171)(23,172)(24,173)(25,174)(26,175)(27,176)(28,177)(29,209)(30,210)(31,197)(32,198)(33,199)(34,200)(35,201)(36,202)(37,203)(38,204)(39,205)(40,206)(41,207)(42,208)(43,101)(44,102)(45,103)(46,104)(47,105)(48,106)(49,107)(50,108)(51,109)(52,110)(53,111)(54,112)(55,99)(56,100)(57,72)(58,73)(59,74)(60,75)(61,76)(62,77)(63,78)(64,79)(65,80)(66,81)(67,82)(68,83)(69,84)(70,71)(85,133)(86,134)(87,135)(88,136)(89,137)(90,138)(91,139)(92,140)(93,127)(94,128)(95,129)(96,130)(97,131)(98,132)(113,186)(114,187)(115,188)(116,189)(117,190)(118,191)(119,192)(120,193)(121,194)(122,195)(123,196)(124,183)(125,184)(126,185)(141,219)(142,220)(143,221)(144,222)(145,223)(146,224)(147,211)(148,212)(149,213)(150,214)(151,215)(152,216)(153,217)(154,218)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154)(155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182)(183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210)(211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,14)(2,13)(3,12)(4,11)(5,10)(6,9)(7,8)(15,18)(16,17)(19,28)(20,27)(21,26)(22,25)(23,24)(29,42)(30,41)(31,40)(32,39)(33,38)(34,37)(35,36)(43,49)(44,48)(45,47)(50,56)(51,55)(52,54)(57,68)(58,67)(59,66)(60,65)(61,64)(62,63)(69,70)(71,77)(72,76)(73,75)(78,84)(79,83)(80,82)(85,97)(86,96)(87,95)(88,94)(89,93)(90,92)(99,102)(100,101)(103,112)(104,111)(105,110)(106,109)(107,108)(113,123)(114,122)(115,121)(116,120)(117,119)(124,126)(127,130)(128,129)(131,140)(132,139)(133,138)(134,137)(135,136)(141,142)(143,154)(144,153)(145,152)(146,151)(147,150)(148,149)(155,159)(156,158)(160,168)(161,167)(162,166)(163,165)(170,182)(171,181)(172,180)(173,179)(174,178)(175,177)(183,192)(184,191)(185,190)(186,189)(187,188)(193,196)(194,195)(197,199)(200,210)(201,209)(202,208)(203,207)(204,206)(211,221)(212,220)(213,219)(214,218)(215,217)(222,224), (1,220,17,43,36,88,63,122)(2,221,18,44,37,89,64,123)(3,222,19,45,38,90,65,124)(4,223,20,46,39,91,66,125)(5,224,21,47,40,92,67,126)(6,211,22,48,41,93,68,113)(7,212,23,49,42,94,69,114)(8,213,24,50,29,95,70,115)(9,214,25,51,30,96,57,116)(10,215,26,52,31,97,58,117)(11,216,27,53,32,98,59,118)(12,217,28,54,33,85,60,119)(13,218,15,55,34,86,61,120)(14,219,16,56,35,87,62,121)(71,149,209,188,173,129,161,108)(72,150,210,189,174,130,162,109)(73,151,197,190,175,131,163,110)(74,152,198,191,176,132,164,111)(75,153,199,192,177,133,165,112)(76,154,200,193,178,134,166,99)(77,141,201,194,179,135,167,100)(78,142,202,195,180,136,168,101)(79,143,203,196,181,137,155,102)(80,144,204,183,182,138,156,103)(81,145,205,184,169,139,157,104)(82,146,206,185,170,140,158,105)(83,147,207,186,171,127,159,106)(84,148,208,187,172,128,160,107), (1,168)(2,155)(3,156)(4,157)(5,158)(6,159)(7,160)(8,161)(9,162)(10,163)(11,164)(12,165)(13,166)(14,167)(15,178)(16,179)(17,180)(18,181)(19,182)(20,169)(21,170)(22,171)(23,172)(24,173)(25,174)(26,175)(27,176)(28,177)(29,209)(30,210)(31,197)(32,198)(33,199)(34,200)(35,201)(36,202)(37,203)(38,204)(39,205)(40,206)(41,207)(42,208)(43,101)(44,102)(45,103)(46,104)(47,105)(48,106)(49,107)(50,108)(51,109)(52,110)(53,111)(54,112)(55,99)(56,100)(57,72)(58,73)(59,74)(60,75)(61,76)(62,77)(63,78)(64,79)(65,80)(66,81)(67,82)(68,83)(69,84)(70,71)(85,133)(86,134)(87,135)(88,136)(89,137)(90,138)(91,139)(92,140)(93,127)(94,128)(95,129)(96,130)(97,131)(98,132)(113,186)(114,187)(115,188)(116,189)(117,190)(118,191)(119,192)(120,193)(121,194)(122,195)(123,196)(124,183)(125,184)(126,185)(141,219)(142,220)(143,221)(144,222)(145,223)(146,224)(147,211)(148,212)(149,213)(150,214)(151,215)(152,216)(153,217)(154,218) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154),(155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182),(183,184,185,186,187,188,189,190,191,192,193,194,195,196),(197,198,199,200,201,202,203,204,205,206,207,208,209,210),(211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,14),(2,13),(3,12),(4,11),(5,10),(6,9),(7,8),(15,18),(16,17),(19,28),(20,27),(21,26),(22,25),(23,24),(29,42),(30,41),(31,40),(32,39),(33,38),(34,37),(35,36),(43,49),(44,48),(45,47),(50,56),(51,55),(52,54),(57,68),(58,67),(59,66),(60,65),(61,64),(62,63),(69,70),(71,77),(72,76),(73,75),(78,84),(79,83),(80,82),(85,97),(86,96),(87,95),(88,94),(89,93),(90,92),(99,102),(100,101),(103,112),(104,111),(105,110),(106,109),(107,108),(113,123),(114,122),(115,121),(116,120),(117,119),(124,126),(127,130),(128,129),(131,140),(132,139),(133,138),(134,137),(135,136),(141,142),(143,154),(144,153),(145,152),(146,151),(147,150),(148,149),(155,159),(156,158),(160,168),(161,167),(162,166),(163,165),(170,182),(171,181),(172,180),(173,179),(174,178),(175,177),(183,192),(184,191),(185,190),(186,189),(187,188),(193,196),(194,195),(197,199),(200,210),(201,209),(202,208),(203,207),(204,206),(211,221),(212,220),(213,219),(214,218),(215,217),(222,224)], [(1,220,17,43,36,88,63,122),(2,221,18,44,37,89,64,123),(3,222,19,45,38,90,65,124),(4,223,20,46,39,91,66,125),(5,224,21,47,40,92,67,126),(6,211,22,48,41,93,68,113),(7,212,23,49,42,94,69,114),(8,213,24,50,29,95,70,115),(9,214,25,51,30,96,57,116),(10,215,26,52,31,97,58,117),(11,216,27,53,32,98,59,118),(12,217,28,54,33,85,60,119),(13,218,15,55,34,86,61,120),(14,219,16,56,35,87,62,121),(71,149,209,188,173,129,161,108),(72,150,210,189,174,130,162,109),(73,151,197,190,175,131,163,110),(74,152,198,191,176,132,164,111),(75,153,199,192,177,133,165,112),(76,154,200,193,178,134,166,99),(77,141,201,194,179,135,167,100),(78,142,202,195,180,136,168,101),(79,143,203,196,181,137,155,102),(80,144,204,183,182,138,156,103),(81,145,205,184,169,139,157,104),(82,146,206,185,170,140,158,105),(83,147,207,186,171,127,159,106),(84,148,208,187,172,128,160,107)], [(1,168),(2,155),(3,156),(4,157),(5,158),(6,159),(7,160),(8,161),(9,162),(10,163),(11,164),(12,165),(13,166),(14,167),(15,178),(16,179),(17,180),(18,181),(19,182),(20,169),(21,170),(22,171),(23,172),(24,173),(25,174),(26,175),(27,176),(28,177),(29,209),(30,210),(31,197),(32,198),(33,199),(34,200),(35,201),(36,202),(37,203),(38,204),(39,205),(40,206),(41,207),(42,208),(43,101),(44,102),(45,103),(46,104),(47,105),(48,106),(49,107),(50,108),(51,109),(52,110),(53,111),(54,112),(55,99),(56,100),(57,72),(58,73),(59,74),(60,75),(61,76),(62,77),(63,78),(64,79),(65,80),(66,81),(67,82),(68,83),(69,84),(70,71),(85,133),(86,134),(87,135),(88,136),(89,137),(90,138),(91,139),(92,140),(93,127),(94,128),(95,129),(96,130),(97,131),(98,132),(113,186),(114,187),(115,188),(116,189),(117,190),(118,191),(119,192),(120,193),(121,194),(122,195),(123,196),(124,183),(125,184),(126,185),(141,219),(142,220),(143,221),(144,222),(145,223),(146,224),(147,211),(148,212),(149,213),(150,214),(151,215),(152,216),(153,217),(154,218)]])

61 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C4D4E4F4G4H7A7B7C8A8B8C8D14A···14I14J···14O28A···28F28G···28L56A···56L
order122222244444444777888814···1414···1428···2828···2856···56
size1111814142244282828562224428282···28···84···48···84···4

61 irreducible representations

dim11111111222222222244444
type++++++++++++++++-++-
imageC1C2C2C2C2C2C2C2D4D4D4D4D7SD16D14D14D14C7⋊D4C8.C22D4×D7D4×D7D7×SD16SD16⋊D7
kernelDic147D4C28.44D4D14⋊C8Q8⋊Dic7C2×D4.D7C282D4C14×SD16C2×Q8×D7Dic14C2×Dic7C7×Q8C22×D7C2×SD16D14C2×C8C2×D4C2×Q8Q8C14C4C22C2C2
# reps111111112121343331213366

Matrix representation of Dic147D4 in GL6(𝔽113)

100000
010000
00112000
00011200
000090103
000020102
,
100000
010000
00112000
000100
000010112
000099103
,
100130000
1001000000
000100
00112000
00001120
00000112
,
109180000
1840000
000100
001000
000010
000001

G:=sub<GL(6,GF(113))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,112,0,0,0,0,0,0,112,0,0,0,0,0,0,90,20,0,0,0,0,103,102],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,112,0,0,0,0,0,0,1,0,0,0,0,0,0,10,99,0,0,0,0,112,103],[100,100,0,0,0,0,13,100,0,0,0,0,0,0,0,112,0,0,0,0,1,0,0,0,0,0,0,0,112,0,0,0,0,0,0,112],[109,18,0,0,0,0,18,4,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

Dic147D4 in GAP, Magma, Sage, TeX

{\rm Dic}_{14}\rtimes_7D_4
% in TeX

G:=Group("Dic14:7D4");
// GroupNames label

G:=SmallGroup(448,704);
// by ID

G=gap.SmallGroup(448,704);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,232,254,219,851,438,102,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^14=b^2=c^8=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=a^7*b,d*c*d=c^3>;
// generators/relations

׿
×
𝔽