Copied to
clipboard

G = C14×SD16order 224 = 25·7

Direct product of C14 and SD16

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C14×SD16, C28.42D4, C5613C22, C28.45C23, (C2×C8)⋊5C14, C83(C2×C14), C4.7(C7×D4), (C2×C56)⋊13C2, (C2×Q8)⋊3C14, Q81(C2×C14), (Q8×C14)⋊10C2, D4.1(C2×C14), (C2×D4).6C14, C14.75(C2×D4), (C2×C14).53D4, C2.12(D4×C14), (C7×Q8)⋊9C22, (D4×C14).13C2, C4.2(C22×C14), C22.15(C7×D4), (C7×D4).11C22, (C2×C28).130C22, (C2×C4).26(C2×C14), SmallGroup(224,168)

Series: Derived Chief Lower central Upper central

C1C4 — C14×SD16
C1C2C4C28C7×Q8C7×SD16 — C14×SD16
C1C2C4 — C14×SD16
C1C2×C14C2×C28 — C14×SD16

Generators and relations for C14×SD16
 G = < a,b,c | a14=b8=c2=1, ab=ba, ac=ca, cbc=b3 >

Subgroups: 108 in 68 conjugacy classes, 44 normal (20 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C7, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C14, C14, C14, C2×C8, SD16, C2×D4, C2×Q8, C28, C28, C2×C14, C2×C14, C2×SD16, C56, C2×C28, C2×C28, C7×D4, C7×D4, C7×Q8, C7×Q8, C22×C14, C2×C56, C7×SD16, D4×C14, Q8×C14, C14×SD16
Quotients: C1, C2, C22, C7, D4, C23, C14, SD16, C2×D4, C2×C14, C2×SD16, C7×D4, C22×C14, C7×SD16, D4×C14, C14×SD16

Smallest permutation representation of C14×SD16
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 108 96 28 47 61 32 75)(2 109 97 15 48 62 33 76)(3 110 98 16 49 63 34 77)(4 111 85 17 50 64 35 78)(5 112 86 18 51 65 36 79)(6 99 87 19 52 66 37 80)(7 100 88 20 53 67 38 81)(8 101 89 21 54 68 39 82)(9 102 90 22 55 69 40 83)(10 103 91 23 56 70 41 84)(11 104 92 24 43 57 42 71)(12 105 93 25 44 58 29 72)(13 106 94 26 45 59 30 73)(14 107 95 27 46 60 31 74)
(15 109)(16 110)(17 111)(18 112)(19 99)(20 100)(21 101)(22 102)(23 103)(24 104)(25 105)(26 106)(27 107)(28 108)(29 93)(30 94)(31 95)(32 96)(33 97)(34 98)(35 85)(36 86)(37 87)(38 88)(39 89)(40 90)(41 91)(42 92)(57 71)(58 72)(59 73)(60 74)(61 75)(62 76)(63 77)(64 78)(65 79)(66 80)(67 81)(68 82)(69 83)(70 84)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,108,96,28,47,61,32,75)(2,109,97,15,48,62,33,76)(3,110,98,16,49,63,34,77)(4,111,85,17,50,64,35,78)(5,112,86,18,51,65,36,79)(6,99,87,19,52,66,37,80)(7,100,88,20,53,67,38,81)(8,101,89,21,54,68,39,82)(9,102,90,22,55,69,40,83)(10,103,91,23,56,70,41,84)(11,104,92,24,43,57,42,71)(12,105,93,25,44,58,29,72)(13,106,94,26,45,59,30,73)(14,107,95,27,46,60,31,74), (15,109)(16,110)(17,111)(18,112)(19,99)(20,100)(21,101)(22,102)(23,103)(24,104)(25,105)(26,106)(27,107)(28,108)(29,93)(30,94)(31,95)(32,96)(33,97)(34,98)(35,85)(36,86)(37,87)(38,88)(39,89)(40,90)(41,91)(42,92)(57,71)(58,72)(59,73)(60,74)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,81)(68,82)(69,83)(70,84)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,108,96,28,47,61,32,75)(2,109,97,15,48,62,33,76)(3,110,98,16,49,63,34,77)(4,111,85,17,50,64,35,78)(5,112,86,18,51,65,36,79)(6,99,87,19,52,66,37,80)(7,100,88,20,53,67,38,81)(8,101,89,21,54,68,39,82)(9,102,90,22,55,69,40,83)(10,103,91,23,56,70,41,84)(11,104,92,24,43,57,42,71)(12,105,93,25,44,58,29,72)(13,106,94,26,45,59,30,73)(14,107,95,27,46,60,31,74), (15,109)(16,110)(17,111)(18,112)(19,99)(20,100)(21,101)(22,102)(23,103)(24,104)(25,105)(26,106)(27,107)(28,108)(29,93)(30,94)(31,95)(32,96)(33,97)(34,98)(35,85)(36,86)(37,87)(38,88)(39,89)(40,90)(41,91)(42,92)(57,71)(58,72)(59,73)(60,74)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,81)(68,82)(69,83)(70,84) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,108,96,28,47,61,32,75),(2,109,97,15,48,62,33,76),(3,110,98,16,49,63,34,77),(4,111,85,17,50,64,35,78),(5,112,86,18,51,65,36,79),(6,99,87,19,52,66,37,80),(7,100,88,20,53,67,38,81),(8,101,89,21,54,68,39,82),(9,102,90,22,55,69,40,83),(10,103,91,23,56,70,41,84),(11,104,92,24,43,57,42,71),(12,105,93,25,44,58,29,72),(13,106,94,26,45,59,30,73),(14,107,95,27,46,60,31,74)], [(15,109),(16,110),(17,111),(18,112),(19,99),(20,100),(21,101),(22,102),(23,103),(24,104),(25,105),(26,106),(27,107),(28,108),(29,93),(30,94),(31,95),(32,96),(33,97),(34,98),(35,85),(36,86),(37,87),(38,88),(39,89),(40,90),(41,91),(42,92),(57,71),(58,72),(59,73),(60,74),(61,75),(62,76),(63,77),(64,78),(65,79),(66,80),(67,81),(68,82),(69,83),(70,84)]])

C14×SD16 is a maximal subgroup of
Dic73SD16  Dic75SD16  SD16⋊Dic7  (C7×D4).D4  (C7×Q8).D4  C56.31D4  C56.43D4  D146SD16  Dic147D4  C5614D4  D287D4  Dic14.16D4  C568D4  C5615D4  C569D4  C56.44D4  D28.29D4

98 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D7A···7F8A8B8C8D14A···14R14S···14AD28A···28L28M···28X56A···56X
order12222244447···7888814···1414···1428···2828···2856···56
size11114422441···122221···14···42···24···42···2

98 irreducible representations

dim1111111111222222
type+++++++
imageC1C2C2C2C2C7C14C14C14C14D4D4SD16C7×D4C7×D4C7×SD16
kernelC14×SD16C2×C56C7×SD16D4×C14Q8×C14C2×SD16C2×C8SD16C2×D4C2×Q8C28C2×C14C14C4C22C2
# reps114116624661146624

Matrix representation of C14×SD16 in GL4(𝔽113) generated by

4000
0400
001090
000109
,
011200
1000
008787
00130
,
1000
011200
0010
00112112
G:=sub<GL(4,GF(113))| [4,0,0,0,0,4,0,0,0,0,109,0,0,0,0,109],[0,1,0,0,112,0,0,0,0,0,87,13,0,0,87,0],[1,0,0,0,0,112,0,0,0,0,1,112,0,0,0,112] >;

C14×SD16 in GAP, Magma, Sage, TeX

C_{14}\times {\rm SD}_{16}
% in TeX

G:=Group("C14xSD16");
// GroupNames label

G:=SmallGroup(224,168);
// by ID

G=gap.SmallGroup(224,168);
# by ID

G:=PCGroup([6,-2,-2,-2,-7,-2,-2,672,697,5044,2530,88]);
// Polycyclic

G:=Group<a,b,c|a^14=b^8=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^3>;
// generators/relations

׿
×
𝔽