# Extensions 1→N→G→Q→1 with N=D7×C4○D4 and Q=C2

Direct product G=N×Q with N=D7×C4○D4 and Q=C2
dρLabelID
C2×D7×C4○D4112C2xD7xC4oD4448,1375

Semidirect products G=N:Q with N=D7×C4○D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(D7×C4○D4)⋊1C2 = D7×C4○D8φ: C2/C1C2 ⊆ Out D7×C4○D41124(D7xC4oD4):1C2448,1220
(D7×C4○D4)⋊2C2 = D810D14φ: C2/C1C2 ⊆ Out D7×C4○D41124(D7xC4oD4):2C2448,1221
(D7×C4○D4)⋊3C2 = D7×C8⋊C22φ: C2/C1C2 ⊆ Out D7×C4○D4568+(D7xC4oD4):3C2448,1225
(D7×C4○D4)⋊4C2 = SD16⋊D14φ: C2/C1C2 ⊆ Out D7×C4○D41128-(D7xC4oD4):4C2448,1226
(D7×C4○D4)⋊5C2 = D56⋊C22φ: C2/C1C2 ⊆ Out D7×C4○D41128+(D7xC4oD4):5C2448,1230
(D7×C4○D4)⋊6C2 = C14.C25φ: C2/C1C2 ⊆ Out D7×C4○D41124(D7xC4oD4):6C2448,1378
(D7×C4○D4)⋊7C2 = D7×2+ 1+4φ: C2/C1C2 ⊆ Out D7×C4○D4568+(D7xC4oD4):7C2448,1379
(D7×C4○D4)⋊8C2 = D14.C24φ: C2/C1C2 ⊆ Out D7×C4○D41128-(D7xC4oD4):8C2448,1380
(D7×C4○D4)⋊9C2 = D7×2- 1+4φ: C2/C1C2 ⊆ Out D7×C4○D41128-(D7xC4oD4):9C2448,1381
(D7×C4○D4)⋊10C2 = D28.39C23φ: C2/C1C2 ⊆ Out D7×C4○D41128+(D7xC4oD4):10C2448,1382

Non-split extensions G=N.Q with N=D7×C4○D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(D7×C4○D4).1C2 = D7×C4≀C2φ: C2/C1C2 ⊆ Out D7×C4○D4564(D7xC4oD4).1C2448,354
(D7×C4○D4).2C2 = C42⋊D14φ: C2/C1C2 ⊆ Out D7×C4○D41124(D7xC4oD4).2C2448,355
(D7×C4○D4).3C2 = C56.49C23φ: C2/C1C2 ⊆ Out D7×C4○D41124(D7xC4oD4).3C2448,1203
(D7×C4○D4).4C2 = D7×C8.C22φ: C2/C1C2 ⊆ Out D7×C4○D41128-(D7xC4oD4).4C2448,1229
(D7×C4○D4).5C2 = D7×C8○D4φ: trivial image1124(D7xC4oD4).5C2448,1202

׿
×
𝔽