direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D7×C4≀C2, C42⋊31D14, M4(2)⋊15D14, D4⋊7(C4×D7), (D4×D7)⋊3C4, Q8⋊7(C4×D7), (Q8×D7)⋊3C4, D28⋊5(C2×C4), D4⋊2D7⋊3C4, (C4×C28)⋊9C22, Q8⋊2D7⋊3C4, (C4×D7).32D4, C4.200(D4×D7), (D7×C42)⋊1C2, D28⋊4C4⋊5C2, Dic14⋊C4⋊3C2, Dic14⋊5(C2×C4), C4○D4.18D14, C28.359(C2×D4), (D7×M4(2))⋊8C2, C22.27(D4×D7), D4⋊2Dic7⋊1C2, C28.17(C22×C4), C4○D28.9C22, (C22×D7).80D4, C4.Dic7⋊2C22, (C2×C28).260C23, (C2×Dic7).159D4, (C4×Dic7)⋊61C22, D14.20(C22⋊C4), (C7×M4(2))⋊13C22, Dic7.10(C22⋊C4), C7⋊1(C2×C4≀C2), (C7×C4≀C2)⋊5C2, C4.17(C2×C4×D7), (C7×D4)⋊5(C2×C4), (C7×Q8)⋊5(C2×C4), (D7×C4○D4).1C2, (C4×D7).16(C2×C4), (C2×C14).24(C2×D4), C2.25(D7×C22⋊C4), C14.24(C2×C22⋊C4), (C7×C4○D4).1C22, (C2×C4×D7).230C22, (C2×C4).367(C22×D7), SmallGroup(448,354)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D7×C4≀C2
G = < a,b,c,d,e | a7=b2=c4=d2=e4=1, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, dcd=c-1, ce=ec, ede-1=c-1d >
Subgroups: 892 in 170 conjugacy classes, 53 normal (51 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, D7, D7, C14, C14, C42, C42, C2×C8, M4(2), M4(2), C22×C4, C2×D4, C2×Q8, C4○D4, C4○D4, Dic7, Dic7, C28, C28, D14, D14, C2×C14, C2×C14, C4≀C2, C4≀C2, C2×C42, C2×M4(2), C2×C4○D4, C7⋊C8, C56, Dic14, Dic14, C4×D7, C4×D7, D28, D28, C2×Dic7, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C7×D4, C7×D4, C7×Q8, C22×D7, C22×D7, C2×C4≀C2, C8×D7, C8⋊D7, C4.Dic7, C4×Dic7, C4×Dic7, C4×C28, C7×M4(2), C2×C4×D7, C2×C4×D7, C4○D28, C4○D28, D4×D7, D4×D7, D4⋊2D7, D4⋊2D7, Q8×D7, Q8⋊2D7, C7×C4○D4, Dic14⋊C4, D28⋊4C4, D4⋊2Dic7, C7×C4≀C2, D7×C42, D7×M4(2), D7×C4○D4, D7×C4≀C2
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D7, C22⋊C4, C22×C4, C2×D4, D14, C4≀C2, C2×C22⋊C4, C4×D7, C22×D7, C2×C4≀C2, C2×C4×D7, D4×D7, D7×C22⋊C4, D7×C4≀C2
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)
(1 7)(2 6)(3 5)(8 10)(11 14)(12 13)(15 17)(18 21)(19 20)(22 24)(25 28)(26 27)(29 31)(32 35)(33 34)(36 38)(39 42)(40 41)(43 45)(46 49)(47 48)(50 52)(53 56)(54 55)
(1 20 13 27)(2 21 14 28)(3 15 8 22)(4 16 9 23)(5 17 10 24)(6 18 11 25)(7 19 12 26)(29 50 36 43)(30 51 37 44)(31 52 38 45)(32 53 39 46)(33 54 40 47)(34 55 41 48)(35 56 42 49)
(1 34)(2 35)(3 29)(4 30)(5 31)(6 32)(7 33)(8 36)(9 37)(10 38)(11 39)(12 40)(13 41)(14 42)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 49)(22 50)(23 51)(24 52)(25 53)(26 54)(27 55)(28 56)
(1 13)(2 14)(3 8)(4 9)(5 10)(6 11)(7 12)(15 22)(16 23)(17 24)(18 25)(19 26)(20 27)(21 28)(29 50 36 43)(30 51 37 44)(31 52 38 45)(32 53 39 46)(33 54 40 47)(34 55 41 48)(35 56 42 49)
G:=sub<Sym(56)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56), (1,7)(2,6)(3,5)(8,10)(11,14)(12,13)(15,17)(18,21)(19,20)(22,24)(25,28)(26,27)(29,31)(32,35)(33,34)(36,38)(39,42)(40,41)(43,45)(46,49)(47,48)(50,52)(53,56)(54,55), (1,20,13,27)(2,21,14,28)(3,15,8,22)(4,16,9,23)(5,17,10,24)(6,18,11,25)(7,19,12,26)(29,50,36,43)(30,51,37,44)(31,52,38,45)(32,53,39,46)(33,54,40,47)(34,55,41,48)(35,56,42,49), (1,34)(2,35)(3,29)(4,30)(5,31)(6,32)(7,33)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56), (1,13)(2,14)(3,8)(4,9)(5,10)(6,11)(7,12)(15,22)(16,23)(17,24)(18,25)(19,26)(20,27)(21,28)(29,50,36,43)(30,51,37,44)(31,52,38,45)(32,53,39,46)(33,54,40,47)(34,55,41,48)(35,56,42,49)>;
G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56), (1,7)(2,6)(3,5)(8,10)(11,14)(12,13)(15,17)(18,21)(19,20)(22,24)(25,28)(26,27)(29,31)(32,35)(33,34)(36,38)(39,42)(40,41)(43,45)(46,49)(47,48)(50,52)(53,56)(54,55), (1,20,13,27)(2,21,14,28)(3,15,8,22)(4,16,9,23)(5,17,10,24)(6,18,11,25)(7,19,12,26)(29,50,36,43)(30,51,37,44)(31,52,38,45)(32,53,39,46)(33,54,40,47)(34,55,41,48)(35,56,42,49), (1,34)(2,35)(3,29)(4,30)(5,31)(6,32)(7,33)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56), (1,13)(2,14)(3,8)(4,9)(5,10)(6,11)(7,12)(15,22)(16,23)(17,24)(18,25)(19,26)(20,27)(21,28)(29,50,36,43)(30,51,37,44)(31,52,38,45)(32,53,39,46)(33,54,40,47)(34,55,41,48)(35,56,42,49) );
G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56)], [(1,7),(2,6),(3,5),(8,10),(11,14),(12,13),(15,17),(18,21),(19,20),(22,24),(25,28),(26,27),(29,31),(32,35),(33,34),(36,38),(39,42),(40,41),(43,45),(46,49),(47,48),(50,52),(53,56),(54,55)], [(1,20,13,27),(2,21,14,28),(3,15,8,22),(4,16,9,23),(5,17,10,24),(6,18,11,25),(7,19,12,26),(29,50,36,43),(30,51,37,44),(31,52,38,45),(32,53,39,46),(33,54,40,47),(34,55,41,48),(35,56,42,49)], [(1,34),(2,35),(3,29),(4,30),(5,31),(6,32),(7,33),(8,36),(9,37),(10,38),(11,39),(12,40),(13,41),(14,42),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,49),(22,50),(23,51),(24,52),(25,53),(26,54),(27,55),(28,56)], [(1,13),(2,14),(3,8),(4,9),(5,10),(6,11),(7,12),(15,22),(16,23),(17,24),(18,25),(19,26),(20,27),(21,28),(29,50,36,43),(30,51,37,44),(31,52,38,45),(32,53,39,46),(33,54,40,47),(34,55,41,48),(35,56,42,49)]])
70 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | ··· | 4G | 4H | 4I | 4J | 4K | ··· | 4O | 4P | 7A | 7B | 7C | 8A | 8B | 8C | 8D | 14A | 14B | 14C | 14D | 14E | 14F | 14G | 14H | 14I | 28A | ··· | 28F | 28G | ··· | 28U | 28V | 28W | 28X | 56A | ··· | 56F |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 7 | 7 | 7 | 8 | 8 | 8 | 8 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 28 | ··· | 28 | 28 | ··· | 28 | 28 | 28 | 28 | 56 | ··· | 56 |
size | 1 | 1 | 2 | 4 | 7 | 7 | 14 | 28 | 1 | 1 | 2 | ··· | 2 | 4 | 7 | 7 | 14 | ··· | 14 | 28 | 2 | 2 | 2 | 4 | 4 | 28 | 28 | 2 | 2 | 2 | 4 | 4 | 4 | 8 | 8 | 8 | 2 | ··· | 2 | 4 | ··· | 4 | 8 | 8 | 8 | 8 | ··· | 8 |
70 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ||||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | C4 | D4 | D4 | D4 | D7 | D14 | D14 | D14 | C4≀C2 | C4×D7 | C4×D7 | D4×D7 | D4×D7 | D7×C4≀C2 |
kernel | D7×C4≀C2 | Dic14⋊C4 | D28⋊4C4 | D4⋊2Dic7 | C7×C4≀C2 | D7×C42 | D7×M4(2) | D7×C4○D4 | D4×D7 | D4⋊2D7 | Q8×D7 | Q8⋊2D7 | C4×D7 | C2×Dic7 | C22×D7 | C4≀C2 | C42 | M4(2) | C4○D4 | D7 | D4 | Q8 | C4 | C22 | C1 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 3 | 3 | 3 | 3 | 8 | 6 | 6 | 3 | 3 | 12 |
Matrix representation of D7×C4≀C2 ►in GL4(𝔽113) generated by
104 | 1 | 0 | 0 |
41 | 33 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
33 | 112 | 0 | 0 |
71 | 80 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 98 | 0 |
0 | 0 | 28 | 15 |
112 | 0 | 0 | 0 |
0 | 112 | 0 | 0 |
0 | 0 | 1 | 106 |
0 | 0 | 0 | 112 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 112 | 0 |
0 | 0 | 30 | 15 |
G:=sub<GL(4,GF(113))| [104,41,0,0,1,33,0,0,0,0,1,0,0,0,0,1],[33,71,0,0,112,80,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,98,28,0,0,0,15],[112,0,0,0,0,112,0,0,0,0,1,0,0,0,106,112],[1,0,0,0,0,1,0,0,0,0,112,30,0,0,0,15] >;
D7×C4≀C2 in GAP, Magma, Sage, TeX
D_7\times C_4\wr C_2
% in TeX
G:=Group("D7xC4wrC2");
// GroupNames label
G:=SmallGroup(448,354);
// by ID
G=gap.SmallGroup(448,354);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,219,58,136,851,438,102,18822]);
// Polycyclic
G:=Group<a,b,c,d,e|a^7=b^2=c^4=d^2=e^4=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d=c^-1,c*e=e*c,e*d*e^-1=c^-1*d>;
// generators/relations