direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D7xC4oD4, D4:7D14, Q8:6D14, D28:10C22, C28.25C23, C14.11C24, D14.6C23, Dic14:10C22, Dic7.10C23, (D4xD7):6C2, (C2xC4):7D14, (Q8xD7):6C2, C4oD28:7C2, D4:2D7:6C2, (C2xC28):4C22, Q8:2D7:6C2, (C7xD4):8C22, (C4xD7):7C22, C7:D4:4C22, (C7xQ8):7C22, (C2xC14).3C23, C4.25(C22xD7), C2.12(C23xD7), C22.2(C22xD7), (C2xDic7):10C22, (C22xD7).31C22, (C2xC4xD7):6C2, C7:4(C2xC4oD4), (C7xC4oD4):3C2, SmallGroup(224,184)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D7xC4oD4
G = < a,b,c,d,e | a7=b2=c4=e2=1, d2=c2, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede=c2d >
Subgroups: 614 in 164 conjugacy classes, 87 normal (16 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C7, C2xC4, C2xC4, D4, D4, Q8, Q8, C23, D7, D7, C14, C14, C22xC4, C2xD4, C2xQ8, C4oD4, C4oD4, Dic7, Dic7, C28, C28, D14, D14, D14, C2xC14, C2xC4oD4, Dic14, C4xD7, C4xD7, D28, C2xDic7, C7:D4, C2xC28, C7xD4, C7xQ8, C22xD7, C2xC4xD7, C4oD28, D4xD7, D4:2D7, Q8xD7, Q8:2D7, C7xC4oD4, D7xC4oD4
Quotients: C1, C2, C22, C23, D7, C4oD4, C24, D14, C2xC4oD4, C22xD7, C23xD7, D7xC4oD4
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)
(1 12)(2 11)(3 10)(4 9)(5 8)(6 14)(7 13)(15 24)(16 23)(17 22)(18 28)(19 27)(20 26)(21 25)(29 38)(30 37)(31 36)(32 42)(33 41)(34 40)(35 39)(43 52)(44 51)(45 50)(46 56)(47 55)(48 54)(49 53)
(1 41 13 34)(2 42 14 35)(3 36 8 29)(4 37 9 30)(5 38 10 31)(6 39 11 32)(7 40 12 33)(15 50 22 43)(16 51 23 44)(17 52 24 45)(18 53 25 46)(19 54 26 47)(20 55 27 48)(21 56 28 49)
(1 27 13 20)(2 28 14 21)(3 22 8 15)(4 23 9 16)(5 24 10 17)(6 25 11 18)(7 26 12 19)(29 50 36 43)(30 51 37 44)(31 52 38 45)(32 53 39 46)(33 54 40 47)(34 55 41 48)(35 56 42 49)
(1 20)(2 21)(3 15)(4 16)(5 17)(6 18)(7 19)(8 22)(9 23)(10 24)(11 25)(12 26)(13 27)(14 28)(29 43)(30 44)(31 45)(32 46)(33 47)(34 48)(35 49)(36 50)(37 51)(38 52)(39 53)(40 54)(41 55)(42 56)
G:=sub<Sym(56)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56), (1,12)(2,11)(3,10)(4,9)(5,8)(6,14)(7,13)(15,24)(16,23)(17,22)(18,28)(19,27)(20,26)(21,25)(29,38)(30,37)(31,36)(32,42)(33,41)(34,40)(35,39)(43,52)(44,51)(45,50)(46,56)(47,55)(48,54)(49,53), (1,41,13,34)(2,42,14,35)(3,36,8,29)(4,37,9,30)(5,38,10,31)(6,39,11,32)(7,40,12,33)(15,50,22,43)(16,51,23,44)(17,52,24,45)(18,53,25,46)(19,54,26,47)(20,55,27,48)(21,56,28,49), (1,27,13,20)(2,28,14,21)(3,22,8,15)(4,23,9,16)(5,24,10,17)(6,25,11,18)(7,26,12,19)(29,50,36,43)(30,51,37,44)(31,52,38,45)(32,53,39,46)(33,54,40,47)(34,55,41,48)(35,56,42,49), (1,20)(2,21)(3,15)(4,16)(5,17)(6,18)(7,19)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)>;
G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56), (1,12)(2,11)(3,10)(4,9)(5,8)(6,14)(7,13)(15,24)(16,23)(17,22)(18,28)(19,27)(20,26)(21,25)(29,38)(30,37)(31,36)(32,42)(33,41)(34,40)(35,39)(43,52)(44,51)(45,50)(46,56)(47,55)(48,54)(49,53), (1,41,13,34)(2,42,14,35)(3,36,8,29)(4,37,9,30)(5,38,10,31)(6,39,11,32)(7,40,12,33)(15,50,22,43)(16,51,23,44)(17,52,24,45)(18,53,25,46)(19,54,26,47)(20,55,27,48)(21,56,28,49), (1,27,13,20)(2,28,14,21)(3,22,8,15)(4,23,9,16)(5,24,10,17)(6,25,11,18)(7,26,12,19)(29,50,36,43)(30,51,37,44)(31,52,38,45)(32,53,39,46)(33,54,40,47)(34,55,41,48)(35,56,42,49), (1,20)(2,21)(3,15)(4,16)(5,17)(6,18)(7,19)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56) );
G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56)], [(1,12),(2,11),(3,10),(4,9),(5,8),(6,14),(7,13),(15,24),(16,23),(17,22),(18,28),(19,27),(20,26),(21,25),(29,38),(30,37),(31,36),(32,42),(33,41),(34,40),(35,39),(43,52),(44,51),(45,50),(46,56),(47,55),(48,54),(49,53)], [(1,41,13,34),(2,42,14,35),(3,36,8,29),(4,37,9,30),(5,38,10,31),(6,39,11,32),(7,40,12,33),(15,50,22,43),(16,51,23,44),(17,52,24,45),(18,53,25,46),(19,54,26,47),(20,55,27,48),(21,56,28,49)], [(1,27,13,20),(2,28,14,21),(3,22,8,15),(4,23,9,16),(5,24,10,17),(6,25,11,18),(7,26,12,19),(29,50,36,43),(30,51,37,44),(31,52,38,45),(32,53,39,46),(33,54,40,47),(34,55,41,48),(35,56,42,49)], [(1,20),(2,21),(3,15),(4,16),(5,17),(6,18),(7,19),(8,22),(9,23),(10,24),(11,25),(12,26),(13,27),(14,28),(29,43),(30,44),(31,45),(32,46),(33,47),(34,48),(35,49),(36,50),(37,51),(38,52),(39,53),(40,54),(41,55),(42,56)]])
D7xC4oD4 is a maximal subgroup of
C42:D14 C56.49C23 D8:10D14 SD16:D14 D56:C22 C14.C25 D14.C24 D28.39C23
D7xC4oD4 is a maximal quotient of
C42.88D14 C42.188D14 C42:8D14 C42:10D14 C42.93D14 C42.94D14 C42.95D14 C42.96D14 C42.97D14 C42.98D14 C4xD4:2D7 C42.102D14 D4:5Dic14 C42.104D14 C4xD4xD7 C42:12D14 C42.228D14 D4:5D28 C42:16D14 C42.229D14 C42.113D14 C42.114D14 C42.122D14 Q8:5Dic14 C4xQ8xD7 C4xQ8:2D7 Q8:5D28 C42.232D14 C42.131D14 C42.132D14 C28:(C4oD4) Dic14:20D4 C4:C4.178D14 C14.342+ 1+4 C4:C4:21D14 C14.402+ 1+4 D28:20D4 C14.422+ 1+4 C14.432+ 1+4 C14.442+ 1+4 C14.452+ 1+4 (Q8xDic7):C2 C22:Q8:25D7 C4:C4:26D14 D28:22D4 Dic14:22D4 C14.522+ 1+4 C14.532+ 1+4 C14.202- 1+4 C14.212- 1+4 C14.222- 1+4 C14.232- 1+4 C4:C4.197D14 C14.802- 1+4 C14.1212+ 1+4 C14.822- 1+4 C4:C4:28D14 C14.612+ 1+4 C14.1222+ 1+4 C14.622+ 1+4 C14.832- 1+4 C14.642+ 1+4 C14.842- 1+4 C14.662+ 1+4 C14.672+ 1+4 C42.233D14 C42.137D14 C42.138D14 C42.139D14 D28:10D4 Dic14:10D4 C42:20D14 C42:21D14 C42.234D14 C42.143D14 Dic14:7Q8 C42.236D14 D28:7Q8 C42.237D14 C42.150D14 C42.151D14 C42.152D14 C42.153D14 C42.154D14 C42.159D14 C42.160D14 C42:23D14 C42:24D14 C42.189D14 C42.161D14 C42.162D14 C42.163D14 C42.164D14 C14.1042- 1+4 (C2xC28):15D4 C14.1452+ 1+4 C14.1072- 1+4 (C2xC28):17D4 C14.1482+ 1+4
50 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 7A | 7B | 7C | 14A | 14B | 14C | 14D | ··· | 14L | 28A | ··· | 28F | 28G | ··· | 28O |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 7 | 7 | 7 | 14 | 14 | 14 | 14 | ··· | 14 | 28 | ··· | 28 | 28 | ··· | 28 |
size | 1 | 1 | 2 | 2 | 2 | 7 | 7 | 14 | 14 | 14 | 1 | 1 | 2 | 2 | 2 | 7 | 7 | 14 | 14 | 14 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
50 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D7 | C4oD4 | D14 | D14 | D14 | D7xC4oD4 |
kernel | D7xC4oD4 | C2xC4xD7 | C4oD28 | D4xD7 | D4:2D7 | Q8xD7 | Q8:2D7 | C7xC4oD4 | C4oD4 | D7 | C2xC4 | D4 | Q8 | C1 |
# reps | 1 | 3 | 3 | 3 | 3 | 1 | 1 | 1 | 3 | 4 | 9 | 9 | 3 | 6 |
Matrix representation of D7xC4oD4 ►in GL4(F29) generated by
22 | 1 | 0 | 0 |
27 | 25 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
25 | 28 | 0 | 0 |
15 | 4 | 0 | 0 |
0 | 0 | 28 | 0 |
0 | 0 | 0 | 28 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 17 | 0 |
0 | 0 | 0 | 17 |
28 | 0 | 0 | 0 |
0 | 28 | 0 | 0 |
0 | 0 | 28 | 22 |
0 | 0 | 21 | 1 |
28 | 0 | 0 | 0 |
0 | 28 | 0 | 0 |
0 | 0 | 28 | 22 |
0 | 0 | 0 | 1 |
G:=sub<GL(4,GF(29))| [22,27,0,0,1,25,0,0,0,0,1,0,0,0,0,1],[25,15,0,0,28,4,0,0,0,0,28,0,0,0,0,28],[1,0,0,0,0,1,0,0,0,0,17,0,0,0,0,17],[28,0,0,0,0,28,0,0,0,0,28,21,0,0,22,1],[28,0,0,0,0,28,0,0,0,0,28,0,0,0,22,1] >;
D7xC4oD4 in GAP, Magma, Sage, TeX
D_7\times C_4\circ D_4
% in TeX
G:=Group("D7xC4oD4");
// GroupNames label
G:=SmallGroup(224,184);
// by ID
G=gap.SmallGroup(224,184);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-7,86,297,6917]);
// Polycyclic
G:=Group<a,b,c,d,e|a^7=b^2=c^4=e^2=1,d^2=c^2,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=c^2*d>;
// generators/relations