Extensions 1→N→G→Q→1 with N=D4 and Q=C2xDic7

Direct product G=NxQ with N=D4 and Q=C2xDic7
dρLabelID
C2xD4xDic7224C2xD4xDic7448,1248

Semidirect products G=N:Q with N=D4 and Q=C2xDic7
extensionφ:Q→Out NdρLabelID
D4:1(C2xDic7) = D8xDic7φ: C2xDic7/Dic7C2 ⊆ Out D4224D4:1(C2xDic7)448,683
D4:2(C2xDic7) = D8:Dic7φ: C2xDic7/Dic7C2 ⊆ Out D4224D4:2(C2xDic7)448,686
D4:3(C2xDic7) = C2xD4:Dic7φ: C2xDic7/C2xC14C2 ⊆ Out D4224D4:3(C2xDic7)448,748
D4:4(C2xDic7) = C4oD4:Dic7φ: C2xDic7/C2xC14C2 ⊆ Out D4224D4:4(C2xDic7)448,766
D4:5(C2xDic7) = C2xD4:2Dic7φ: C2xDic7/C2xC14C2 ⊆ Out D4112D4:5(C2xDic7)448,769
D4:6(C2xDic7) = C24.38D14φ: trivial image112D4:6(C2xDic7)448,1251
D4:7(C2xDic7) = C4oD4xDic7φ: trivial image224D4:7(C2xDic7)448,1279
D4:8(C2xDic7) = C14.1062- 1+4φ: trivial image224D4:8(C2xDic7)448,1280

Non-split extensions G=N.Q with N=D4 and Q=C2xDic7
extensionφ:Q→Out NdρLabelID
D4.1(C2xDic7) = SD16xDic7φ: C2xDic7/Dic7C2 ⊆ Out D4224D4.1(C2xDic7)448,695
D4.2(C2xDic7) = SD16:Dic7φ: C2xDic7/Dic7C2 ⊆ Out D4224D4.2(C2xDic7)448,698
D4.3(C2xDic7) = D8:5Dic7φ: C2xDic7/Dic7C2 ⊆ Out D41124D4.3(C2xDic7)448,730
D4.4(C2xDic7) = D8:4Dic7φ: C2xDic7/Dic7C2 ⊆ Out D41124D4.4(C2xDic7)448,731
D4.5(C2xDic7) = (D4xC14):6C4φ: C2xDic7/C2xC14C2 ⊆ Out D4112D4.5(C2xDic7)448,749
D4.6(C2xDic7) = C28.(C2xD4)φ: C2xDic7/C2xC14C2 ⊆ Out D4224D4.6(C2xDic7)448,767
D4.7(C2xDic7) = (D4xC14):9C4φ: C2xDic7/C2xC14C2 ⊆ Out D41124D4.7(C2xDic7)448,770
D4.8(C2xDic7) = C2xQ8.Dic7φ: trivial image224D4.8(C2xDic7)448,1271
D4.9(C2xDic7) = C28.76C24φ: trivial image1124D4.9(C2xDic7)448,1272

׿
x
:
Z
F
o
wr
Q
<