direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: C2×Dic7, C14⋊C4, C22.D7, C2.2D14, C14.4C22, C7⋊2(C2×C4), (C2×C14).C2, SmallGroup(56,6)
Series: Derived ►Chief ►Lower central ►Upper central
C7 — C2×Dic7 |
Generators and relations for C2×Dic7
G = < a,b,c | a2=b14=1, c2=b7, ab=ba, ac=ca, cbc-1=b-1 >
Character table of C2×Dic7
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 7A | 7B | 7C | 14A | 14B | 14C | 14D | 14E | 14F | 14G | 14H | 14I | |
size | 1 | 1 | 1 | 1 | 7 | 7 | 7 | 7 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | -1 | -1 | 1 | i | -i | -i | i | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ6 | 1 | -1 | 1 | -1 | -i | -i | i | i | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | linear of order 4 |
ρ7 | 1 | -1 | 1 | -1 | i | i | -i | -i | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | linear of order 4 |
ρ8 | 1 | -1 | -1 | 1 | -i | i | i | -i | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ9 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ74+ζ73 | ζ76+ζ7 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | orthogonal lifted from D7 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ75+ζ72 | ζ74+ζ73 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | orthogonal lifted from D7 |
ρ11 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ76+ζ7 | ζ75+ζ72 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | orthogonal lifted from D7 |
ρ12 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ75+ζ72 | -ζ74-ζ73 | -ζ74-ζ73 | -ζ76-ζ7 | -ζ75-ζ72 | -ζ76-ζ7 | ζ74+ζ73 | ζ76+ζ7 | -ζ75-ζ72 | orthogonal lifted from D14 |
ρ13 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ74+ζ73 | -ζ76-ζ7 | -ζ76-ζ7 | -ζ75-ζ72 | -ζ74-ζ73 | -ζ75-ζ72 | ζ76+ζ7 | ζ75+ζ72 | -ζ74-ζ73 | orthogonal lifted from D14 |
ρ14 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ76+ζ7 | -ζ75-ζ72 | -ζ75-ζ72 | -ζ74-ζ73 | -ζ76-ζ7 | -ζ74-ζ73 | ζ75+ζ72 | ζ74+ζ73 | -ζ76-ζ7 | orthogonal lifted from D14 |
ρ15 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | -ζ76-ζ7 | ζ75+ζ72 | -ζ75-ζ72 | -ζ74-ζ73 | -ζ76-ζ7 | ζ74+ζ73 | -ζ75-ζ72 | -ζ74-ζ73 | ζ76+ζ7 | symplectic lifted from Dic7, Schur index 2 |
ρ16 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | -ζ75-ζ72 | ζ74+ζ73 | -ζ74-ζ73 | -ζ76-ζ7 | -ζ75-ζ72 | ζ76+ζ7 | -ζ74-ζ73 | -ζ76-ζ7 | ζ75+ζ72 | symplectic lifted from Dic7, Schur index 2 |
ρ17 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | -ζ75-ζ72 | -ζ74-ζ73 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | -ζ76-ζ7 | -ζ74-ζ73 | -ζ76-ζ7 | -ζ75-ζ72 | symplectic lifted from Dic7, Schur index 2 |
ρ18 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | -ζ74-ζ73 | -ζ76-ζ7 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | -ζ75-ζ72 | -ζ76-ζ7 | -ζ75-ζ72 | -ζ74-ζ73 | symplectic lifted from Dic7, Schur index 2 |
ρ19 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | -ζ76-ζ7 | -ζ75-ζ72 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | -ζ74-ζ73 | -ζ75-ζ72 | -ζ74-ζ73 | -ζ76-ζ7 | symplectic lifted from Dic7, Schur index 2 |
ρ20 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | -ζ74-ζ73 | ζ76+ζ7 | -ζ76-ζ7 | -ζ75-ζ72 | -ζ74-ζ73 | ζ75+ζ72 | -ζ76-ζ7 | -ζ75-ζ72 | ζ74+ζ73 | symplectic lifted from Dic7, Schur index 2 |
(1 15)(2 16)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 23)(10 24)(11 25)(12 26)(13 27)(14 28)(29 50)(30 51)(31 52)(32 53)(33 54)(34 55)(35 56)(36 43)(37 44)(38 45)(39 46)(40 47)(41 48)(42 49)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)
(1 29 8 36)(2 42 9 35)(3 41 10 34)(4 40 11 33)(5 39 12 32)(6 38 13 31)(7 37 14 30)(15 50 22 43)(16 49 23 56)(17 48 24 55)(18 47 25 54)(19 46 26 53)(20 45 27 52)(21 44 28 51)
G:=sub<Sym(56)| (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,50)(30,51)(31,52)(32,53)(33,54)(34,55)(35,56)(36,43)(37,44)(38,45)(39,46)(40,47)(41,48)(42,49), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,29,8,36)(2,42,9,35)(3,41,10,34)(4,40,11,33)(5,39,12,32)(6,38,13,31)(7,37,14,30)(15,50,22,43)(16,49,23,56)(17,48,24,55)(18,47,25,54)(19,46,26,53)(20,45,27,52)(21,44,28,51)>;
G:=Group( (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,50)(30,51)(31,52)(32,53)(33,54)(34,55)(35,56)(36,43)(37,44)(38,45)(39,46)(40,47)(41,48)(42,49), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,29,8,36)(2,42,9,35)(3,41,10,34)(4,40,11,33)(5,39,12,32)(6,38,13,31)(7,37,14,30)(15,50,22,43)(16,49,23,56)(17,48,24,55)(18,47,25,54)(19,46,26,53)(20,45,27,52)(21,44,28,51) );
G=PermutationGroup([[(1,15),(2,16),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,23),(10,24),(11,25),(12,26),(13,27),(14,28),(29,50),(30,51),(31,52),(32,53),(33,54),(34,55),(35,56),(36,43),(37,44),(38,45),(39,46),(40,47),(41,48),(42,49)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56)], [(1,29,8,36),(2,42,9,35),(3,41,10,34),(4,40,11,33),(5,39,12,32),(6,38,13,31),(7,37,14,30),(15,50,22,43),(16,49,23,56),(17,48,24,55),(18,47,25,54),(19,46,26,53),(20,45,27,52),(21,44,28,51)]])
C2×Dic7 is a maximal subgroup of
Dic7⋊C4 C4⋊Dic7 D14⋊C4 C23.D7 C2×C4×D7 D4⋊2D7
C2×Dic7 is a maximal quotient of C4.Dic7 C4⋊Dic7 C23.D7
Matrix representation of C2×Dic7 ►in GL4(𝔽29) generated by
28 | 0 | 0 | 0 |
0 | 28 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
28 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 28 | 7 |
12 | 0 | 0 | 0 |
0 | 28 | 0 | 0 |
0 | 0 | 25 | 8 |
0 | 0 | 9 | 4 |
G:=sub<GL(4,GF(29))| [28,0,0,0,0,28,0,0,0,0,1,0,0,0,0,1],[28,0,0,0,0,1,0,0,0,0,0,28,0,0,1,7],[12,0,0,0,0,28,0,0,0,0,25,9,0,0,8,4] >;
C2×Dic7 in GAP, Magma, Sage, TeX
C_2\times {\rm Dic}_7
% in TeX
G:=Group("C2xDic7");
// GroupNames label
G:=SmallGroup(56,6);
// by ID
G=gap.SmallGroup(56,6);
# by ID
G:=PCGroup([4,-2,-2,-2,-7,16,771]);
// Polycyclic
G:=Group<a,b,c|a^2=b^14=1,c^2=b^7,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations
Export
Subgroup lattice of C2×Dic7 in TeX
Character table of C2×Dic7 in TeX