extension | φ:Q→Out N | d | ρ | Label | ID |
(D7×C2×C8)⋊1C2 = D7×C4○D8 | φ: C2/C1 → C2 ⊆ Out D7×C2×C8 | 112 | 4 | (D7xC2xC8):1C2 | 448,1220 |
(D7×C2×C8)⋊2C2 = C8⋊7D28 | φ: C2/C1 → C2 ⊆ Out D7×C2×C8 | 224 | | (D7xC2xC8):2C2 | 448,417 |
(D7×C2×C8)⋊3C2 = C56⋊6D4 | φ: C2/C1 → C2 ⊆ Out D7×C2×C8 | 224 | | (D7xC2xC8):3C2 | 448,691 |
(D7×C2×C8)⋊4C2 = C2×D7×D8 | φ: C2/C1 → C2 ⊆ Out D7×C2×C8 | 112 | | (D7xC2xC8):4C2 | 448,1207 |
(D7×C2×C8)⋊5C2 = C2×D8⋊3D7 | φ: C2/C1 → C2 ⊆ Out D7×C2×C8 | 224 | | (D7xC2xC8):5C2 | 448,1209 |
(D7×C2×C8)⋊6C2 = C2×Q8.D14 | φ: C2/C1 → C2 ⊆ Out D7×C2×C8 | 224 | | (D7xC2xC8):6C2 | 448,1218 |
(D7×C2×C8)⋊7C2 = C8⋊8D28 | φ: C2/C1 → C2 ⊆ Out D7×C2×C8 | 224 | | (D7xC2xC8):7C2 | 448,398 |
(D7×C2×C8)⋊8C2 = C56⋊14D4 | φ: C2/C1 → C2 ⊆ Out D7×C2×C8 | 224 | | (D7xC2xC8):8C2 | 448,705 |
(D7×C2×C8)⋊9C2 = C2×D7×SD16 | φ: C2/C1 → C2 ⊆ Out D7×C2×C8 | 112 | | (D7xC2xC8):9C2 | 448,1211 |
(D7×C2×C8)⋊10C2 = C2×SD16⋊3D7 | φ: C2/C1 → C2 ⊆ Out D7×C2×C8 | 224 | | (D7xC2xC8):10C2 | 448,1214 |
(D7×C2×C8)⋊11C2 = C8×D28 | φ: C2/C1 → C2 ⊆ Out D7×C2×C8 | 224 | | (D7xC2xC8):11C2 | 448,220 |
(D7×C2×C8)⋊12C2 = D7×C22⋊C8 | φ: C2/C1 → C2 ⊆ Out D7×C2×C8 | 112 | | (D7xC2xC8):12C2 | 448,258 |
(D7×C2×C8)⋊13C2 = C7⋊D4⋊C8 | φ: C2/C1 → C2 ⊆ Out D7×C2×C8 | 224 | | (D7xC2xC8):13C2 | 448,259 |
(D7×C2×C8)⋊14C2 = D14⋊C8⋊C2 | φ: C2/C1 → C2 ⊆ Out D7×C2×C8 | 224 | | (D7xC2xC8):14C2 | 448,261 |
(D7×C2×C8)⋊15C2 = D14⋊2M4(2) | φ: C2/C1 → C2 ⊆ Out D7×C2×C8 | 224 | | (D7xC2xC8):15C2 | 448,262 |
(D7×C2×C8)⋊16C2 = D7×D4⋊C4 | φ: C2/C1 → C2 ⊆ Out D7×C2×C8 | 112 | | (D7xC2xC8):16C2 | 448,303 |
(D7×C2×C8)⋊17C2 = D4⋊2D7⋊C4 | φ: C2/C1 → C2 ⊆ Out D7×C2×C8 | 224 | | (D7xC2xC8):17C2 | 448,306 |
(D7×C2×C8)⋊18C2 = D14⋊D8 | φ: C2/C1 → C2 ⊆ Out D7×C2×C8 | 224 | | (D7xC2xC8):18C2 | 448,309 |
(D7×C2×C8)⋊19C2 = D14⋊SD16 | φ: C2/C1 → C2 ⊆ Out D7×C2×C8 | 224 | | (D7xC2xC8):19C2 | 448,312 |
(D7×C2×C8)⋊20C2 = Q8⋊2D7⋊C4 | φ: C2/C1 → C2 ⊆ Out D7×C2×C8 | 224 | | (D7xC2xC8):20C2 | 448,338 |
(D7×C2×C8)⋊21C2 = D14⋊2SD16 | φ: C2/C1 → C2 ⊆ Out D7×C2×C8 | 224 | | (D7xC2xC8):21C2 | 448,341 |
(D7×C2×C8)⋊22C2 = D28⋊C8 | φ: C2/C1 → C2 ⊆ Out D7×C2×C8 | 224 | | (D7xC2xC8):22C2 | 448,368 |
(D7×C2×C8)⋊23C2 = D14⋊3M4(2) | φ: C2/C1 → C2 ⊆ Out D7×C2×C8 | 224 | | (D7xC2xC8):23C2 | 448,370 |
(D7×C2×C8)⋊24C2 = C8×C7⋊D4 | φ: C2/C1 → C2 ⊆ Out D7×C2×C8 | 224 | | (D7xC2xC8):24C2 | 448,643 |
(D7×C2×C8)⋊25C2 = C2×D28.2C4 | φ: C2/C1 → C2 ⊆ Out D7×C2×C8 | 224 | | (D7xC2xC8):25C2 | 448,1191 |
(D7×C2×C8)⋊26C2 = C8⋊9D28 | φ: C2/C1 → C2 ⊆ Out D7×C2×C8 | 224 | | (D7xC2xC8):26C2 | 448,240 |
(D7×C2×C8)⋊27C2 = C56⋊D4 | φ: C2/C1 → C2 ⊆ Out D7×C2×C8 | 224 | | (D7xC2xC8):27C2 | 448,661 |
(D7×C2×C8)⋊28C2 = C2×D7×M4(2) | φ: C2/C1 → C2 ⊆ Out D7×C2×C8 | 112 | | (D7xC2xC8):28C2 | 448,1196 |
(D7×C2×C8)⋊29C2 = C2×D28.C4 | φ: C2/C1 → C2 ⊆ Out D7×C2×C8 | 224 | | (D7xC2xC8):29C2 | 448,1197 |
(D7×C2×C8)⋊30C2 = D7×C8○D4 | φ: C2/C1 → C2 ⊆ Out D7×C2×C8 | 112 | 4 | (D7xC2xC8):30C2 | 448,1202 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(D7×C2×C8).1C2 = D7×C8.C4 | φ: C2/C1 → C2 ⊆ Out D7×C2×C8 | 112 | 4 | (D7xC2xC8).1C2 | 448,426 |
(D7×C2×C8).2C2 = D7×C2.D8 | φ: C2/C1 → C2 ⊆ Out D7×C2×C8 | 224 | | (D7xC2xC8).2C2 | 448,413 |
(D7×C2×C8).3C2 = C8.27(C4×D7) | φ: C2/C1 → C2 ⊆ Out D7×C2×C8 | 224 | | (D7xC2xC8).3C2 | 448,414 |
(D7×C2×C8).4C2 = D14⋊2Q16 | φ: C2/C1 → C2 ⊆ Out D7×C2×C8 | 224 | | (D7xC2xC8).4C2 | 448,421 |
(D7×C2×C8).5C2 = D14⋊3Q16 | φ: C2/C1 → C2 ⊆ Out D7×C2×C8 | 224 | | (D7xC2xC8).5C2 | 448,722 |
(D7×C2×C8).6C2 = C2×D7×Q16 | φ: C2/C1 → C2 ⊆ Out D7×C2×C8 | 224 | | (D7xC2xC8).6C2 | 448,1216 |
(D7×C2×C8).7C2 = D7×C4.Q8 | φ: C2/C1 → C2 ⊆ Out D7×C2×C8 | 224 | | (D7xC2xC8).7C2 | 448,393 |
(D7×C2×C8).8C2 = (C8×D7)⋊C4 | φ: C2/C1 → C2 ⊆ Out D7×C2×C8 | 224 | | (D7xC2xC8).8C2 | 448,394 |
(D7×C2×C8).9C2 = D14⋊C16 | φ: C2/C1 → C2 ⊆ Out D7×C2×C8 | 224 | | (D7xC2xC8).9C2 | 448,64 |
(D7×C2×C8).10C2 = D14.C42 | φ: C2/C1 → C2 ⊆ Out D7×C2×C8 | 224 | | (D7xC2xC8).10C2 | 448,223 |
(D7×C2×C8).11C2 = D7×Q8⋊C4 | φ: C2/C1 → C2 ⊆ Out D7×C2×C8 | 224 | | (D7xC2xC8).11C2 | 448,335 |
(D7×C2×C8).12C2 = D14⋊Q16 | φ: C2/C1 → C2 ⊆ Out D7×C2×C8 | 224 | | (D7xC2xC8).12C2 | 448,347 |
(D7×C2×C8).13C2 = D7×C4⋊C8 | φ: C2/C1 → C2 ⊆ Out D7×C2×C8 | 224 | | (D7xC2xC8).13C2 | 448,366 |
(D7×C2×C8).14C2 = C42.30D14 | φ: C2/C1 → C2 ⊆ Out D7×C2×C8 | 224 | | (D7xC2xC8).14C2 | 448,373 |
(D7×C2×C8).15C2 = C2×C16⋊D7 | φ: C2/C1 → C2 ⊆ Out D7×C2×C8 | 224 | | (D7xC2xC8).15C2 | 448,434 |
(D7×C2×C8).16C2 = D7×C8⋊C4 | φ: C2/C1 → C2 ⊆ Out D7×C2×C8 | 224 | | (D7xC2xC8).16C2 | 448,238 |
(D7×C2×C8).17C2 = D14.4C42 | φ: C2/C1 → C2 ⊆ Out D7×C2×C8 | 224 | | (D7xC2xC8).17C2 | 448,242 |
(D7×C2×C8).18C2 = D7×M5(2) | φ: C2/C1 → C2 ⊆ Out D7×C2×C8 | 112 | 4 | (D7xC2xC8).18C2 | 448,440 |
(D7×C2×C8).19C2 = D7×C4×C8 | φ: trivial image | 224 | | (D7xC2xC8).19C2 | 448,218 |
(D7×C2×C8).20C2 = D7×C2×C16 | φ: trivial image | 224 | | (D7xC2xC8).20C2 | 448,433 |