# Extensions 1→N→G→Q→1 with N=D7×C2×C8 and Q=C2

Direct product G=N×Q with N=D7×C2×C8 and Q=C2
dρLabelID
D7×C22×C8224D7xC2^2xC8448,1189

Semidirect products G=N:Q with N=D7×C2×C8 and Q=C2
extensionφ:Q→Out NdρLabelID
(D7×C2×C8)⋊1C2 = D7×C4○D8φ: C2/C1C2 ⊆ Out D7×C2×C81124(D7xC2xC8):1C2448,1220
(D7×C2×C8)⋊2C2 = C87D28φ: C2/C1C2 ⊆ Out D7×C2×C8224(D7xC2xC8):2C2448,417
(D7×C2×C8)⋊3C2 = C566D4φ: C2/C1C2 ⊆ Out D7×C2×C8224(D7xC2xC8):3C2448,691
(D7×C2×C8)⋊4C2 = C2×D7×D8φ: C2/C1C2 ⊆ Out D7×C2×C8112(D7xC2xC8):4C2448,1207
(D7×C2×C8)⋊5C2 = C2×D83D7φ: C2/C1C2 ⊆ Out D7×C2×C8224(D7xC2xC8):5C2448,1209
(D7×C2×C8)⋊6C2 = C2×Q8.D14φ: C2/C1C2 ⊆ Out D7×C2×C8224(D7xC2xC8):6C2448,1218
(D7×C2×C8)⋊7C2 = C88D28φ: C2/C1C2 ⊆ Out D7×C2×C8224(D7xC2xC8):7C2448,398
(D7×C2×C8)⋊8C2 = C5614D4φ: C2/C1C2 ⊆ Out D7×C2×C8224(D7xC2xC8):8C2448,705
(D7×C2×C8)⋊9C2 = C2×D7×SD16φ: C2/C1C2 ⊆ Out D7×C2×C8112(D7xC2xC8):9C2448,1211
(D7×C2×C8)⋊10C2 = C2×SD163D7φ: C2/C1C2 ⊆ Out D7×C2×C8224(D7xC2xC8):10C2448,1214
(D7×C2×C8)⋊11C2 = C8×D28φ: C2/C1C2 ⊆ Out D7×C2×C8224(D7xC2xC8):11C2448,220
(D7×C2×C8)⋊12C2 = D7×C22⋊C8φ: C2/C1C2 ⊆ Out D7×C2×C8112(D7xC2xC8):12C2448,258
(D7×C2×C8)⋊13C2 = C7⋊D4⋊C8φ: C2/C1C2 ⊆ Out D7×C2×C8224(D7xC2xC8):13C2448,259
(D7×C2×C8)⋊14C2 = D14⋊C8⋊C2φ: C2/C1C2 ⊆ Out D7×C2×C8224(D7xC2xC8):14C2448,261
(D7×C2×C8)⋊15C2 = D142M4(2)φ: C2/C1C2 ⊆ Out D7×C2×C8224(D7xC2xC8):15C2448,262
(D7×C2×C8)⋊16C2 = D7×D4⋊C4φ: C2/C1C2 ⊆ Out D7×C2×C8112(D7xC2xC8):16C2448,303
(D7×C2×C8)⋊17C2 = D42D7⋊C4φ: C2/C1C2 ⊆ Out D7×C2×C8224(D7xC2xC8):17C2448,306
(D7×C2×C8)⋊18C2 = D14⋊D8φ: C2/C1C2 ⊆ Out D7×C2×C8224(D7xC2xC8):18C2448,309
(D7×C2×C8)⋊19C2 = D14⋊SD16φ: C2/C1C2 ⊆ Out D7×C2×C8224(D7xC2xC8):19C2448,312
(D7×C2×C8)⋊20C2 = Q82D7⋊C4φ: C2/C1C2 ⊆ Out D7×C2×C8224(D7xC2xC8):20C2448,338
(D7×C2×C8)⋊21C2 = D142SD16φ: C2/C1C2 ⊆ Out D7×C2×C8224(D7xC2xC8):21C2448,341
(D7×C2×C8)⋊22C2 = D28⋊C8φ: C2/C1C2 ⊆ Out D7×C2×C8224(D7xC2xC8):22C2448,368
(D7×C2×C8)⋊23C2 = D143M4(2)φ: C2/C1C2 ⊆ Out D7×C2×C8224(D7xC2xC8):23C2448,370
(D7×C2×C8)⋊24C2 = C8×C7⋊D4φ: C2/C1C2 ⊆ Out D7×C2×C8224(D7xC2xC8):24C2448,643
(D7×C2×C8)⋊25C2 = C2×D28.2C4φ: C2/C1C2 ⊆ Out D7×C2×C8224(D7xC2xC8):25C2448,1191
(D7×C2×C8)⋊26C2 = C89D28φ: C2/C1C2 ⊆ Out D7×C2×C8224(D7xC2xC8):26C2448,240
(D7×C2×C8)⋊27C2 = C56⋊D4φ: C2/C1C2 ⊆ Out D7×C2×C8224(D7xC2xC8):27C2448,661
(D7×C2×C8)⋊28C2 = C2×D7×M4(2)φ: C2/C1C2 ⊆ Out D7×C2×C8112(D7xC2xC8):28C2448,1196
(D7×C2×C8)⋊29C2 = C2×D28.C4φ: C2/C1C2 ⊆ Out D7×C2×C8224(D7xC2xC8):29C2448,1197
(D7×C2×C8)⋊30C2 = D7×C8○D4φ: C2/C1C2 ⊆ Out D7×C2×C81124(D7xC2xC8):30C2448,1202

Non-split extensions G=N.Q with N=D7×C2×C8 and Q=C2
extensionφ:Q→Out NdρLabelID
(D7×C2×C8).1C2 = D7×C8.C4φ: C2/C1C2 ⊆ Out D7×C2×C81124(D7xC2xC8).1C2448,426
(D7×C2×C8).2C2 = D7×C2.D8φ: C2/C1C2 ⊆ Out D7×C2×C8224(D7xC2xC8).2C2448,413
(D7×C2×C8).3C2 = C8.27(C4×D7)φ: C2/C1C2 ⊆ Out D7×C2×C8224(D7xC2xC8).3C2448,414
(D7×C2×C8).4C2 = D142Q16φ: C2/C1C2 ⊆ Out D7×C2×C8224(D7xC2xC8).4C2448,421
(D7×C2×C8).5C2 = D143Q16φ: C2/C1C2 ⊆ Out D7×C2×C8224(D7xC2xC8).5C2448,722
(D7×C2×C8).6C2 = C2×D7×Q16φ: C2/C1C2 ⊆ Out D7×C2×C8224(D7xC2xC8).6C2448,1216
(D7×C2×C8).7C2 = D7×C4.Q8φ: C2/C1C2 ⊆ Out D7×C2×C8224(D7xC2xC8).7C2448,393
(D7×C2×C8).8C2 = (C8×D7)⋊C4φ: C2/C1C2 ⊆ Out D7×C2×C8224(D7xC2xC8).8C2448,394
(D7×C2×C8).9C2 = D14⋊C16φ: C2/C1C2 ⊆ Out D7×C2×C8224(D7xC2xC8).9C2448,64
(D7×C2×C8).10C2 = D14.C42φ: C2/C1C2 ⊆ Out D7×C2×C8224(D7xC2xC8).10C2448,223
(D7×C2×C8).11C2 = D7×Q8⋊C4φ: C2/C1C2 ⊆ Out D7×C2×C8224(D7xC2xC8).11C2448,335
(D7×C2×C8).12C2 = D14⋊Q16φ: C2/C1C2 ⊆ Out D7×C2×C8224(D7xC2xC8).12C2448,347
(D7×C2×C8).13C2 = D7×C4⋊C8φ: C2/C1C2 ⊆ Out D7×C2×C8224(D7xC2xC8).13C2448,366
(D7×C2×C8).14C2 = C42.30D14φ: C2/C1C2 ⊆ Out D7×C2×C8224(D7xC2xC8).14C2448,373
(D7×C2×C8).15C2 = C2×C16⋊D7φ: C2/C1C2 ⊆ Out D7×C2×C8224(D7xC2xC8).15C2448,434
(D7×C2×C8).16C2 = D7×C8⋊C4φ: C2/C1C2 ⊆ Out D7×C2×C8224(D7xC2xC8).16C2448,238
(D7×C2×C8).17C2 = D14.4C42φ: C2/C1C2 ⊆ Out D7×C2×C8224(D7xC2xC8).17C2448,242
(D7×C2×C8).18C2 = D7×M5(2)φ: C2/C1C2 ⊆ Out D7×C2×C81124(D7xC2xC8).18C2448,440
(D7×C2×C8).19C2 = D7×C4×C8φ: trivial image224(D7xC2xC8).19C2448,218
(D7×C2×C8).20C2 = D7×C2×C16φ: trivial image224(D7xC2xC8).20C2448,433

׿
×
𝔽