Copied to
clipboard

G = D7×D4⋊C4order 448 = 26·7

Direct product of D7 and D4⋊C4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D7×D4⋊C4, D14.10D8, D14.5SD16, D45(C4×D7), (D4×D7)⋊1C4, C2.2(D7×D8), C4⋊C418D14, D282(C2×C4), (C2×C8)⋊25D14, (C4×D7).37D4, C4.154(D4×D7), C14.21(C2×D8), C14.D84C2, C2.2(D7×SD16), (C2×C56)⋊21C22, C28.103(C2×D4), D4⋊Dic73C2, C28.4(C22×C4), C2.D5617C2, C22.68(D4×D7), (C2×D4).130D14, C4⋊Dic717C22, (C2×Dic7).88D4, C14.22(C2×SD16), (C2×C28).209C23, (C2×D28).47C22, (D4×C14).30C22, (C22×D7).104D4, D14.18(C22⋊C4), Dic7.6(C22⋊C4), C4.4(C2×C4×D7), (D7×C4⋊C4)⋊1C2, (D7×C2×C8)⋊16C2, (C2×D4×D7).3C2, (C7×D4)⋊2(C2×C4), C71(C2×D4⋊C4), (C7×C4⋊C4)⋊1C22, (C2×C7⋊C8)⋊30C22, (C4×D7).12(C2×C4), C2.17(D7×C22⋊C4), (C7×D4⋊C4)⋊18C2, (C2×C14).222(C2×D4), C14.16(C2×C22⋊C4), (C2×C4×D7).222C22, (C2×C4).316(C22×D7), SmallGroup(448,303)

Series: Derived Chief Lower central Upper central

C1C28 — D7×D4⋊C4
C1C7C14C2×C14C2×C28C2×C4×D7C2×D4×D7 — D7×D4⋊C4
C7C14C28 — D7×D4⋊C4
C1C22C2×C4D4⋊C4

Generators and relations for D7×D4⋊C4
 G = < a,b,c,d,e | a7=b2=c4=d2=e4=1, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, dcd=ece-1=c-1, ede-1=cd >

Subgroups: 1332 in 202 conjugacy classes, 63 normal (37 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C2×C4, C2×C4, D4, D4, C23, D7, D7, C14, C14, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, C2×D4, C2×D4, C24, Dic7, Dic7, C28, C28, D14, D14, C2×C14, C2×C14, D4⋊C4, D4⋊C4, C2×C4⋊C4, C22×C8, C22×D4, C7⋊C8, C56, C4×D7, C4×D7, D28, D28, C2×Dic7, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C7×D4, C7×D4, C22×D7, C22×D7, C22×C14, C2×D4⋊C4, C8×D7, C2×C7⋊C8, Dic7⋊C4, C4⋊Dic7, C7×C4⋊C4, C2×C56, C2×C4×D7, C2×C4×D7, C2×D28, D4×D7, D4×D7, C2×C7⋊D4, D4×C14, C23×D7, C14.D8, C2.D56, D4⋊Dic7, C7×D4⋊C4, D7×C4⋊C4, D7×C2×C8, C2×D4×D7, D7×D4⋊C4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D7, C22⋊C4, D8, SD16, C22×C4, C2×D4, D14, D4⋊C4, C2×C22⋊C4, C2×D8, C2×SD16, C4×D7, C22×D7, C2×D4⋊C4, C2×C4×D7, D4×D7, D7×C22⋊C4, D7×D8, D7×SD16, D7×D4⋊C4

Smallest permutation representation of D7×D4⋊C4
On 112 points
Generators in S112
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)(64 65 66 67 68 69 70)(71 72 73 74 75 76 77)(78 79 80 81 82 83 84)(85 86 87 88 89 90 91)(92 93 94 95 96 97 98)(99 100 101 102 103 104 105)(106 107 108 109 110 111 112)
(1 7)(2 6)(3 5)(8 10)(11 14)(12 13)(15 17)(18 21)(19 20)(22 24)(25 28)(26 27)(29 31)(32 35)(33 34)(36 38)(39 42)(40 41)(43 45)(46 49)(47 48)(50 52)(53 56)(54 55)(57 59)(60 63)(61 62)(64 66)(67 70)(68 69)(71 73)(74 77)(75 76)(78 80)(81 84)(82 83)(85 87)(88 91)(89 90)(92 94)(95 98)(96 97)(99 101)(102 105)(103 104)(106 108)(109 112)(110 111)
(1 20 13 27)(2 21 14 28)(3 15 8 22)(4 16 9 23)(5 17 10 24)(6 18 11 25)(7 19 12 26)(29 43 36 50)(30 44 37 51)(31 45 38 52)(32 46 39 53)(33 47 40 54)(34 48 41 55)(35 49 42 56)(57 78 64 71)(58 79 65 72)(59 80 66 73)(60 81 67 74)(61 82 68 75)(62 83 69 76)(63 84 70 77)(85 106 92 99)(86 107 93 100)(87 108 94 101)(88 109 95 102)(89 110 96 103)(90 111 97 104)(91 112 98 105)
(1 20)(2 21)(3 15)(4 16)(5 17)(6 18)(7 19)(8 22)(9 23)(10 24)(11 25)(12 26)(13 27)(14 28)(29 43)(30 44)(31 45)(32 46)(33 47)(34 48)(35 49)(36 50)(37 51)(38 52)(39 53)(40 54)(41 55)(42 56)(71 78)(72 79)(73 80)(74 81)(75 82)(76 83)(77 84)(99 106)(100 107)(101 108)(102 109)(103 110)(104 111)(105 112)
(1 90 34 62)(2 91 35 63)(3 85 29 57)(4 86 30 58)(5 87 31 59)(6 88 32 60)(7 89 33 61)(8 92 36 64)(9 93 37 65)(10 94 38 66)(11 95 39 67)(12 96 40 68)(13 97 41 69)(14 98 42 70)(15 99 43 71)(16 100 44 72)(17 101 45 73)(18 102 46 74)(19 103 47 75)(20 104 48 76)(21 105 49 77)(22 106 50 78)(23 107 51 79)(24 108 52 80)(25 109 53 81)(26 110 54 82)(27 111 55 83)(28 112 56 84)

G:=sub<Sym(112)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112), (1,7)(2,6)(3,5)(8,10)(11,14)(12,13)(15,17)(18,21)(19,20)(22,24)(25,28)(26,27)(29,31)(32,35)(33,34)(36,38)(39,42)(40,41)(43,45)(46,49)(47,48)(50,52)(53,56)(54,55)(57,59)(60,63)(61,62)(64,66)(67,70)(68,69)(71,73)(74,77)(75,76)(78,80)(81,84)(82,83)(85,87)(88,91)(89,90)(92,94)(95,98)(96,97)(99,101)(102,105)(103,104)(106,108)(109,112)(110,111), (1,20,13,27)(2,21,14,28)(3,15,8,22)(4,16,9,23)(5,17,10,24)(6,18,11,25)(7,19,12,26)(29,43,36,50)(30,44,37,51)(31,45,38,52)(32,46,39,53)(33,47,40,54)(34,48,41,55)(35,49,42,56)(57,78,64,71)(58,79,65,72)(59,80,66,73)(60,81,67,74)(61,82,68,75)(62,83,69,76)(63,84,70,77)(85,106,92,99)(86,107,93,100)(87,108,94,101)(88,109,95,102)(89,110,96,103)(90,111,97,104)(91,112,98,105), (1,20)(2,21)(3,15)(4,16)(5,17)(6,18)(7,19)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(71,78)(72,79)(73,80)(74,81)(75,82)(76,83)(77,84)(99,106)(100,107)(101,108)(102,109)(103,110)(104,111)(105,112), (1,90,34,62)(2,91,35,63)(3,85,29,57)(4,86,30,58)(5,87,31,59)(6,88,32,60)(7,89,33,61)(8,92,36,64)(9,93,37,65)(10,94,38,66)(11,95,39,67)(12,96,40,68)(13,97,41,69)(14,98,42,70)(15,99,43,71)(16,100,44,72)(17,101,45,73)(18,102,46,74)(19,103,47,75)(20,104,48,76)(21,105,49,77)(22,106,50,78)(23,107,51,79)(24,108,52,80)(25,109,53,81)(26,110,54,82)(27,111,55,83)(28,112,56,84)>;

G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112), (1,7)(2,6)(3,5)(8,10)(11,14)(12,13)(15,17)(18,21)(19,20)(22,24)(25,28)(26,27)(29,31)(32,35)(33,34)(36,38)(39,42)(40,41)(43,45)(46,49)(47,48)(50,52)(53,56)(54,55)(57,59)(60,63)(61,62)(64,66)(67,70)(68,69)(71,73)(74,77)(75,76)(78,80)(81,84)(82,83)(85,87)(88,91)(89,90)(92,94)(95,98)(96,97)(99,101)(102,105)(103,104)(106,108)(109,112)(110,111), (1,20,13,27)(2,21,14,28)(3,15,8,22)(4,16,9,23)(5,17,10,24)(6,18,11,25)(7,19,12,26)(29,43,36,50)(30,44,37,51)(31,45,38,52)(32,46,39,53)(33,47,40,54)(34,48,41,55)(35,49,42,56)(57,78,64,71)(58,79,65,72)(59,80,66,73)(60,81,67,74)(61,82,68,75)(62,83,69,76)(63,84,70,77)(85,106,92,99)(86,107,93,100)(87,108,94,101)(88,109,95,102)(89,110,96,103)(90,111,97,104)(91,112,98,105), (1,20)(2,21)(3,15)(4,16)(5,17)(6,18)(7,19)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(71,78)(72,79)(73,80)(74,81)(75,82)(76,83)(77,84)(99,106)(100,107)(101,108)(102,109)(103,110)(104,111)(105,112), (1,90,34,62)(2,91,35,63)(3,85,29,57)(4,86,30,58)(5,87,31,59)(6,88,32,60)(7,89,33,61)(8,92,36,64)(9,93,37,65)(10,94,38,66)(11,95,39,67)(12,96,40,68)(13,97,41,69)(14,98,42,70)(15,99,43,71)(16,100,44,72)(17,101,45,73)(18,102,46,74)(19,103,47,75)(20,104,48,76)(21,105,49,77)(22,106,50,78)(23,107,51,79)(24,108,52,80)(25,109,53,81)(26,110,54,82)(27,111,55,83)(28,112,56,84) );

G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63),(64,65,66,67,68,69,70),(71,72,73,74,75,76,77),(78,79,80,81,82,83,84),(85,86,87,88,89,90,91),(92,93,94,95,96,97,98),(99,100,101,102,103,104,105),(106,107,108,109,110,111,112)], [(1,7),(2,6),(3,5),(8,10),(11,14),(12,13),(15,17),(18,21),(19,20),(22,24),(25,28),(26,27),(29,31),(32,35),(33,34),(36,38),(39,42),(40,41),(43,45),(46,49),(47,48),(50,52),(53,56),(54,55),(57,59),(60,63),(61,62),(64,66),(67,70),(68,69),(71,73),(74,77),(75,76),(78,80),(81,84),(82,83),(85,87),(88,91),(89,90),(92,94),(95,98),(96,97),(99,101),(102,105),(103,104),(106,108),(109,112),(110,111)], [(1,20,13,27),(2,21,14,28),(3,15,8,22),(4,16,9,23),(5,17,10,24),(6,18,11,25),(7,19,12,26),(29,43,36,50),(30,44,37,51),(31,45,38,52),(32,46,39,53),(33,47,40,54),(34,48,41,55),(35,49,42,56),(57,78,64,71),(58,79,65,72),(59,80,66,73),(60,81,67,74),(61,82,68,75),(62,83,69,76),(63,84,70,77),(85,106,92,99),(86,107,93,100),(87,108,94,101),(88,109,95,102),(89,110,96,103),(90,111,97,104),(91,112,98,105)], [(1,20),(2,21),(3,15),(4,16),(5,17),(6,18),(7,19),(8,22),(9,23),(10,24),(11,25),(12,26),(13,27),(14,28),(29,43),(30,44),(31,45),(32,46),(33,47),(34,48),(35,49),(36,50),(37,51),(38,52),(39,53),(40,54),(41,55),(42,56),(71,78),(72,79),(73,80),(74,81),(75,82),(76,83),(77,84),(99,106),(100,107),(101,108),(102,109),(103,110),(104,111),(105,112)], [(1,90,34,62),(2,91,35,63),(3,85,29,57),(4,86,30,58),(5,87,31,59),(6,88,32,60),(7,89,33,61),(8,92,36,64),(9,93,37,65),(10,94,38,66),(11,95,39,67),(12,96,40,68),(13,97,41,69),(14,98,42,70),(15,99,43,71),(16,100,44,72),(17,101,45,73),(18,102,46,74),(19,103,47,75),(20,104,48,76),(21,105,49,77),(22,106,50,78),(23,107,51,79),(24,108,52,80),(25,109,53,81),(26,110,54,82),(27,111,55,83),(28,112,56,84)]])

70 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K4A4B4C4D4E4F4G4H7A7B7C8A8B8C8D8E8F8G8H14A···14I14J···14O28A···28F28G···28L56A···56L
order122222222222444444447778888888814···1414···1428···2828···2856···56
size111144777728282244141428282222222141414142···28···84···48···84···4

70 irreducible representations

dim11111111122222222224444
type+++++++++++++++++++
imageC1C2C2C2C2C2C2C2C4D4D4D4D7D8SD16D14D14D14C4×D7D4×D7D4×D7D7×D8D7×SD16
kernelD7×D4⋊C4C14.D8C2.D56D4⋊Dic7C7×D4⋊C4D7×C4⋊C4D7×C2×C8C2×D4×D7D4×D7C4×D7C2×Dic7C22×D7D4⋊C4D14D14C4⋊C4C2×C8C2×D4D4C4C22C2C2
# reps111111118211344333123366

Matrix representation of D7×D4⋊C4 in GL5(𝔽113)

10000
01000
00100
000331
00041104
,
1120000
01000
00100
00010424
000729
,
10000
0011200
01000
00010
00001
,
1120000
00100
01000
00010
00001
,
150000
0828200
0823100
0001120
0000112

G:=sub<GL(5,GF(113))| [1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,33,41,0,0,0,1,104],[112,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,104,72,0,0,0,24,9],[1,0,0,0,0,0,0,1,0,0,0,112,0,0,0,0,0,0,1,0,0,0,0,0,1],[112,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1],[15,0,0,0,0,0,82,82,0,0,0,82,31,0,0,0,0,0,112,0,0,0,0,0,112] >;

D7×D4⋊C4 in GAP, Magma, Sage, TeX

D_7\times D_4\rtimes C_4
% in TeX

G:=Group("D7xD4:C4");
// GroupNames label

G:=SmallGroup(448,303);
// by ID

G=gap.SmallGroup(448,303);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,219,58,851,438,102,18822]);
// Polycyclic

G:=Group<a,b,c,d,e|a^7=b^2=c^4=d^2=e^4=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d=e*c*e^-1=c^-1,e*d*e^-1=c*d>;
// generators/relations

׿
×
𝔽