Extensions 1→N→G→Q→1 with N=C2 and Q=C2×D56

Direct product G=N×Q with N=C2 and Q=C2×D56
dρLabelID
C22×D56224C2^2xD56448,1193


Non-split extensions G=N.Q with N=C2 and Q=C2×D56
extensionφ:Q→Aut NdρLabelID
C2.1(C2×D56) = C4×D56central extension (φ=1)224C2.1(C2xD56)448,226
C2.2(C2×D56) = C2×C561C4central extension (φ=1)448C2.2(C2xD56)448,639
C2.3(C2×D56) = C2×C2.D56central extension (φ=1)224C2.3(C2xD56)448,646
C2.4(C2×D56) = C568Q8central stem extension (φ=1)448C2.4(C2xD56)448,216
C2.5(C2×D56) = C4.5D56central stem extension (φ=1)224C2.5(C2xD56)448,228
C2.6(C2×D56) = C284D8central stem extension (φ=1)224C2.6(C2xD56)448,229
C2.7(C2×D56) = D2813D4central stem extension (φ=1)112C2.7(C2xD56)448,266
C2.8(C2×D56) = C22.D56central stem extension (φ=1)224C2.8(C2xD56)448,270
C2.9(C2×D56) = C4⋊D56central stem extension (φ=1)224C2.9(C2xD56)448,377
C2.10(C2×D56) = D284Q8central stem extension (φ=1)224C2.10(C2xD56)448,380
C2.11(C2×D56) = C2×D112central stem extension (φ=1)224C2.11(C2xD56)448,436
C2.12(C2×D56) = C2×C112⋊C2central stem extension (φ=1)224C2.12(C2xD56)448,437
C2.13(C2×D56) = D1127C2central stem extension (φ=1)2242C2.13(C2xD56)448,438
C2.14(C2×D56) = C2×Dic56central stem extension (φ=1)448C2.14(C2xD56)448,439
C2.15(C2×D56) = C16⋊D14central stem extension (φ=1)1124+C2.15(C2xD56)448,442
C2.16(C2×D56) = C16.D14central stem extension (φ=1)2244-C2.16(C2xD56)448,443
C2.17(C2×D56) = C5629D4central stem extension (φ=1)224C2.17(C2xD56)448,649

׿
×
𝔽