Copied to
clipboard

G = C2×D56order 224 = 25·7

Direct product of C2 and D56

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×D56, C87D14, C141D8, C4.7D28, C568C22, C28.30D4, D283C22, C28.29C23, C22.13D28, C71(C2×D8), (C2×C8)⋊3D7, (C2×C56)⋊5C2, (C2×D28)⋊5C2, C2.12(C2×D28), C14.10(C2×D4), (C2×C4).80D14, (C2×C14).17D4, C4.27(C22×D7), (C2×C28).89C22, SmallGroup(224,98)

Series: Derived Chief Lower central Upper central

C1C28 — C2×D56
C1C7C14C28D28C2×D28 — C2×D56
C7C14C28 — C2×D56
C1C22C2×C4C2×C8

Generators and relations for C2×D56
 G = < a,b,c | a2=b56=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 494 in 76 conjugacy classes, 33 normal (15 characteristic)
C1, C2, C2, C2, C4, C22, C22, C7, C8, C2×C4, D4, C23, D7, C14, C14, C2×C8, D8, C2×D4, C28, D14, C2×C14, C2×D8, C56, D28, D28, C2×C28, C22×D7, D56, C2×C56, C2×D28, C2×D56
Quotients: C1, C2, C22, D4, C23, D7, D8, C2×D4, D14, C2×D8, D28, C22×D7, D56, C2×D28, C2×D56

Smallest permutation representation of C2×D56
On 112 points
Generators in S112
(1 57)(2 58)(3 59)(4 60)(5 61)(6 62)(7 63)(8 64)(9 65)(10 66)(11 67)(12 68)(13 69)(14 70)(15 71)(16 72)(17 73)(18 74)(19 75)(20 76)(21 77)(22 78)(23 79)(24 80)(25 81)(26 82)(27 83)(28 84)(29 85)(30 86)(31 87)(32 88)(33 89)(34 90)(35 91)(36 92)(37 93)(38 94)(39 95)(40 96)(41 97)(42 98)(43 99)(44 100)(45 101)(46 102)(47 103)(48 104)(49 105)(50 106)(51 107)(52 108)(53 109)(54 110)(55 111)(56 112)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 49)(2 48)(3 47)(4 46)(5 45)(6 44)(7 43)(8 42)(9 41)(10 40)(11 39)(12 38)(13 37)(14 36)(15 35)(16 34)(17 33)(18 32)(19 31)(20 30)(21 29)(22 28)(23 27)(24 26)(50 56)(51 55)(52 54)(57 105)(58 104)(59 103)(60 102)(61 101)(62 100)(63 99)(64 98)(65 97)(66 96)(67 95)(68 94)(69 93)(70 92)(71 91)(72 90)(73 89)(74 88)(75 87)(76 86)(77 85)(78 84)(79 83)(80 82)(106 112)(107 111)(108 110)

G:=sub<Sym(112)| (1,57)(2,58)(3,59)(4,60)(5,61)(6,62)(7,63)(8,64)(9,65)(10,66)(11,67)(12,68)(13,69)(14,70)(15,71)(16,72)(17,73)(18,74)(19,75)(20,76)(21,77)(22,78)(23,79)(24,80)(25,81)(26,82)(27,83)(28,84)(29,85)(30,86)(31,87)(32,88)(33,89)(34,90)(35,91)(36,92)(37,93)(38,94)(39,95)(40,96)(41,97)(42,98)(43,99)(44,100)(45,101)(46,102)(47,103)(48,104)(49,105)(50,106)(51,107)(52,108)(53,109)(54,110)(55,111)(56,112), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,49)(2,48)(3,47)(4,46)(5,45)(6,44)(7,43)(8,42)(9,41)(10,40)(11,39)(12,38)(13,37)(14,36)(15,35)(16,34)(17,33)(18,32)(19,31)(20,30)(21,29)(22,28)(23,27)(24,26)(50,56)(51,55)(52,54)(57,105)(58,104)(59,103)(60,102)(61,101)(62,100)(63,99)(64,98)(65,97)(66,96)(67,95)(68,94)(69,93)(70,92)(71,91)(72,90)(73,89)(74,88)(75,87)(76,86)(77,85)(78,84)(79,83)(80,82)(106,112)(107,111)(108,110)>;

G:=Group( (1,57)(2,58)(3,59)(4,60)(5,61)(6,62)(7,63)(8,64)(9,65)(10,66)(11,67)(12,68)(13,69)(14,70)(15,71)(16,72)(17,73)(18,74)(19,75)(20,76)(21,77)(22,78)(23,79)(24,80)(25,81)(26,82)(27,83)(28,84)(29,85)(30,86)(31,87)(32,88)(33,89)(34,90)(35,91)(36,92)(37,93)(38,94)(39,95)(40,96)(41,97)(42,98)(43,99)(44,100)(45,101)(46,102)(47,103)(48,104)(49,105)(50,106)(51,107)(52,108)(53,109)(54,110)(55,111)(56,112), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,49)(2,48)(3,47)(4,46)(5,45)(6,44)(7,43)(8,42)(9,41)(10,40)(11,39)(12,38)(13,37)(14,36)(15,35)(16,34)(17,33)(18,32)(19,31)(20,30)(21,29)(22,28)(23,27)(24,26)(50,56)(51,55)(52,54)(57,105)(58,104)(59,103)(60,102)(61,101)(62,100)(63,99)(64,98)(65,97)(66,96)(67,95)(68,94)(69,93)(70,92)(71,91)(72,90)(73,89)(74,88)(75,87)(76,86)(77,85)(78,84)(79,83)(80,82)(106,112)(107,111)(108,110) );

G=PermutationGroup([[(1,57),(2,58),(3,59),(4,60),(5,61),(6,62),(7,63),(8,64),(9,65),(10,66),(11,67),(12,68),(13,69),(14,70),(15,71),(16,72),(17,73),(18,74),(19,75),(20,76),(21,77),(22,78),(23,79),(24,80),(25,81),(26,82),(27,83),(28,84),(29,85),(30,86),(31,87),(32,88),(33,89),(34,90),(35,91),(36,92),(37,93),(38,94),(39,95),(40,96),(41,97),(42,98),(43,99),(44,100),(45,101),(46,102),(47,103),(48,104),(49,105),(50,106),(51,107),(52,108),(53,109),(54,110),(55,111),(56,112)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,49),(2,48),(3,47),(4,46),(5,45),(6,44),(7,43),(8,42),(9,41),(10,40),(11,39),(12,38),(13,37),(14,36),(15,35),(16,34),(17,33),(18,32),(19,31),(20,30),(21,29),(22,28),(23,27),(24,26),(50,56),(51,55),(52,54),(57,105),(58,104),(59,103),(60,102),(61,101),(62,100),(63,99),(64,98),(65,97),(66,96),(67,95),(68,94),(69,93),(70,92),(71,91),(72,90),(73,89),(74,88),(75,87),(76,86),(77,85),(78,84),(79,83),(80,82),(106,112),(107,111),(108,110)]])

C2×D56 is a maximal subgroup of
C14.D16  D56.C4  C2.D112  C28.3D8  C284D8  C8.8D28  D56⋊C4  C8⋊D28  D2813D4  D2814D4  D4⋊D28  D283D4  D284D4  D28.12D4  C4⋊D56  D28.19D4  C567D4  D569C4  Dic75D8  C87D28  C8.21D28  C16⋊D14  C5629D4  C563D4  D4.4D28  C565D4  C569D4  C56.28D4  Q16⋊D14  D4.12D28  C2×D7×D8  D815D14
C2×D56 is a maximal quotient of
C568Q8  C4.5D56  C284D8  D2813D4  C22.D56  C4⋊D56  D284Q8  D1127C2  C16⋊D14  C16.D14  C5629D4

62 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B7A7B7C8A8B8C8D14A···14I28A···28L56A···56X
order1222222244777888814···1428···2856···56
size1111282828282222222222···22···22···2

62 irreducible representations

dim1111222222222
type+++++++++++++
imageC1C2C2C2D4D4D7D8D14D14D28D28D56
kernelC2×D56D56C2×C56C2×D28C28C2×C14C2×C8C14C8C2×C4C4C22C2
# reps14121134636624

Matrix representation of C2×D56 in GL3(𝔽113) generated by

11200
010
001
,
11200
010184
02970
,
11200
079112
02534
G:=sub<GL(3,GF(113))| [112,0,0,0,1,0,0,0,1],[112,0,0,0,101,29,0,84,70],[112,0,0,0,79,25,0,112,34] >;

C2×D56 in GAP, Magma, Sage, TeX

C_2\times D_{56}
% in TeX

G:=Group("C2xD56");
// GroupNames label

G:=SmallGroup(224,98);
// by ID

G=gap.SmallGroup(224,98);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,218,122,579,69,6917]);
// Polycyclic

G:=Group<a,b,c|a^2=b^56=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽