Copied to
clipboard

G = D227order 454 = 2·227

Dihedral group

metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: D227, C227⋊C2, sometimes denoted D454 or Dih227 or Dih454, SmallGroup(454,1)

Series: Derived Chief Lower central Upper central

C1C227 — D227
C1C227 — D227
C227 — D227
C1

Generators and relations for D227
 G = < a,b | a227=b2=1, bab=a-1 >

227C2

Smallest permutation representation of D227
On 227 points: primitive
Generators in S227
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227)
(1 227)(2 226)(3 225)(4 224)(5 223)(6 222)(7 221)(8 220)(9 219)(10 218)(11 217)(12 216)(13 215)(14 214)(15 213)(16 212)(17 211)(18 210)(19 209)(20 208)(21 207)(22 206)(23 205)(24 204)(25 203)(26 202)(27 201)(28 200)(29 199)(30 198)(31 197)(32 196)(33 195)(34 194)(35 193)(36 192)(37 191)(38 190)(39 189)(40 188)(41 187)(42 186)(43 185)(44 184)(45 183)(46 182)(47 181)(48 180)(49 179)(50 178)(51 177)(52 176)(53 175)(54 174)(55 173)(56 172)(57 171)(58 170)(59 169)(60 168)(61 167)(62 166)(63 165)(64 164)(65 163)(66 162)(67 161)(68 160)(69 159)(70 158)(71 157)(72 156)(73 155)(74 154)(75 153)(76 152)(77 151)(78 150)(79 149)(80 148)(81 147)(82 146)(83 145)(84 144)(85 143)(86 142)(87 141)(88 140)(89 139)(90 138)(91 137)(92 136)(93 135)(94 134)(95 133)(96 132)(97 131)(98 130)(99 129)(100 128)(101 127)(102 126)(103 125)(104 124)(105 123)(106 122)(107 121)(108 120)(109 119)(110 118)(111 117)(112 116)(113 115)

G:=sub<Sym(227)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227), (1,227)(2,226)(3,225)(4,224)(5,223)(6,222)(7,221)(8,220)(9,219)(10,218)(11,217)(12,216)(13,215)(14,214)(15,213)(16,212)(17,211)(18,210)(19,209)(20,208)(21,207)(22,206)(23,205)(24,204)(25,203)(26,202)(27,201)(28,200)(29,199)(30,198)(31,197)(32,196)(33,195)(34,194)(35,193)(36,192)(37,191)(38,190)(39,189)(40,188)(41,187)(42,186)(43,185)(44,184)(45,183)(46,182)(47,181)(48,180)(49,179)(50,178)(51,177)(52,176)(53,175)(54,174)(55,173)(56,172)(57,171)(58,170)(59,169)(60,168)(61,167)(62,166)(63,165)(64,164)(65,163)(66,162)(67,161)(68,160)(69,159)(70,158)(71,157)(72,156)(73,155)(74,154)(75,153)(76,152)(77,151)(78,150)(79,149)(80,148)(81,147)(82,146)(83,145)(84,144)(85,143)(86,142)(87,141)(88,140)(89,139)(90,138)(91,137)(92,136)(93,135)(94,134)(95,133)(96,132)(97,131)(98,130)(99,129)(100,128)(101,127)(102,126)(103,125)(104,124)(105,123)(106,122)(107,121)(108,120)(109,119)(110,118)(111,117)(112,116)(113,115)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227), (1,227)(2,226)(3,225)(4,224)(5,223)(6,222)(7,221)(8,220)(9,219)(10,218)(11,217)(12,216)(13,215)(14,214)(15,213)(16,212)(17,211)(18,210)(19,209)(20,208)(21,207)(22,206)(23,205)(24,204)(25,203)(26,202)(27,201)(28,200)(29,199)(30,198)(31,197)(32,196)(33,195)(34,194)(35,193)(36,192)(37,191)(38,190)(39,189)(40,188)(41,187)(42,186)(43,185)(44,184)(45,183)(46,182)(47,181)(48,180)(49,179)(50,178)(51,177)(52,176)(53,175)(54,174)(55,173)(56,172)(57,171)(58,170)(59,169)(60,168)(61,167)(62,166)(63,165)(64,164)(65,163)(66,162)(67,161)(68,160)(69,159)(70,158)(71,157)(72,156)(73,155)(74,154)(75,153)(76,152)(77,151)(78,150)(79,149)(80,148)(81,147)(82,146)(83,145)(84,144)(85,143)(86,142)(87,141)(88,140)(89,139)(90,138)(91,137)(92,136)(93,135)(94,134)(95,133)(96,132)(97,131)(98,130)(99,129)(100,128)(101,127)(102,126)(103,125)(104,124)(105,123)(106,122)(107,121)(108,120)(109,119)(110,118)(111,117)(112,116)(113,115) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227)], [(1,227),(2,226),(3,225),(4,224),(5,223),(6,222),(7,221),(8,220),(9,219),(10,218),(11,217),(12,216),(13,215),(14,214),(15,213),(16,212),(17,211),(18,210),(19,209),(20,208),(21,207),(22,206),(23,205),(24,204),(25,203),(26,202),(27,201),(28,200),(29,199),(30,198),(31,197),(32,196),(33,195),(34,194),(35,193),(36,192),(37,191),(38,190),(39,189),(40,188),(41,187),(42,186),(43,185),(44,184),(45,183),(46,182),(47,181),(48,180),(49,179),(50,178),(51,177),(52,176),(53,175),(54,174),(55,173),(56,172),(57,171),(58,170),(59,169),(60,168),(61,167),(62,166),(63,165),(64,164),(65,163),(66,162),(67,161),(68,160),(69,159),(70,158),(71,157),(72,156),(73,155),(74,154),(75,153),(76,152),(77,151),(78,150),(79,149),(80,148),(81,147),(82,146),(83,145),(84,144),(85,143),(86,142),(87,141),(88,140),(89,139),(90,138),(91,137),(92,136),(93,135),(94,134),(95,133),(96,132),(97,131),(98,130),(99,129),(100,128),(101,127),(102,126),(103,125),(104,124),(105,123),(106,122),(107,121),(108,120),(109,119),(110,118),(111,117),(112,116),(113,115)])

115 conjugacy classes

class 1  2 227A···227DI
order12227···227
size12272···2

115 irreducible representations

dim112
type+++
imageC1C2D227
kernelD227C227C1
# reps11113

Matrix representation of D227 in GL2(𝔽5449) generated by

36475448
10
,
36475448
50481802
G:=sub<GL(2,GF(5449))| [3647,1,5448,0],[3647,5048,5448,1802] >;

D227 in GAP, Magma, Sage, TeX

D_{227}
% in TeX

G:=Group("D227");
// GroupNames label

G:=SmallGroup(454,1);
// by ID

G=gap.SmallGroup(454,1);
# by ID

G:=PCGroup([2,-2,-227,1809]);
// Polycyclic

G:=Group<a,b|a^227=b^2=1,b*a*b=a^-1>;
// generators/relations

Export

Subgroup lattice of D227 in TeX

׿
×
𝔽