Extensions 1→N→G→Q→1 with N=C15 and Q=C5×S3

Direct product G=N×Q with N=C15 and Q=C5×S3

Semidirect products G=N:Q with N=C15 and Q=C5×S3
extensionφ:Q→Aut NdρLabelID
C151(C5×S3) = C5×C3⋊D15φ: C5×S3/C15C2 ⊆ Aut C1590C15:1(C5xS3)450,32
C152(C5×S3) = C15×D15φ: C5×S3/C15C2 ⊆ Aut C15302C15:2(C5xS3)450,29
C153(C5×S3) = C3⋊S3×C52φ: C5×S3/C15C2 ⊆ Aut C15225C15:3(C5xS3)450,31

Non-split extensions G=N.Q with N=C15 and Q=C5×S3
extensionφ:Q→Aut NdρLabelID
C15.1(C5×S3) = C5×D45φ: C5×S3/C15C2 ⊆ Aut C15902C15.1(C5xS3)450,17
C15.2(C5×S3) = D9×C25φ: C5×S3/C15C2 ⊆ Aut C152252C15.2(C5xS3)450,1
C15.3(C5×S3) = C3⋊S3×C25φ: C5×S3/C15C2 ⊆ Aut C15225C15.3(C5xS3)450,8
C15.4(C5×S3) = D9×C52φ: C5×S3/C15C2 ⊆ Aut C15225C15.4(C5xS3)450,16
C15.5(C5×S3) = S3×C75central extension (φ=1)1502C15.5(C5xS3)450,6