Copied to
clipboard

G = C15xD15order 450 = 2·32·52

Direct product of C15 and D15

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: C15xD15, C15wrC2, C15:1C30, C152:3C2, C5:(S3xC15), C3:(D5xC15), C15:2(C5xS3), (C5xC15):5S3, (C5xC15):6C6, (C3xC15):4D5, C15:3(C3xD5), C52:4(C3xS3), C32:1(C5xD5), (C3xC15):2C10, SmallGroup(450,29)

Series: Derived Chief Lower central Upper central

C1C15 — C15xD15
C1C5C15C5xC15C152 — C15xD15
C15 — C15xD15
C1C15

Generators and relations for C15xD15
 G = < a,b,c | a15=b15=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 144 in 48 conjugacy classes, 20 normal (all characteristic)
Quotients: C1, C2, C3, C5, S3, C6, D5, C10, C15, C3xS3, C5xS3, C3xD5, D15, C30, C5xD5, S3xC15, C3xD15, D5xC15, C5xD15, C15xD15
15C2
2C3
2C5
2C5
5S3
15C6
3D5
15C10
2C15
2C15
2C15
2C15
2C15
2C15
2C15
2C15
2C15
2C15
5C3xS3
3C3xD5
5C5xS3
15C30
2C3xC15
2C3xC15
3C5xD5
2C5xC15
5S3xC15
3D5xC15

Permutation representations of C15xD15
On 30 points - transitive group 30T104
Generators in S30
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)
(1 9 2 10 3 11 4 12 5 13 6 14 7 15 8)(16 23 30 22 29 21 28 20 27 19 26 18 25 17 24)
(1 19)(2 20)(3 21)(4 22)(5 23)(6 24)(7 25)(8 26)(9 27)(10 28)(11 29)(12 30)(13 16)(14 17)(15 18)

G:=sub<Sym(30)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30), (1,9,2,10,3,11,4,12,5,13,6,14,7,15,8)(16,23,30,22,29,21,28,20,27,19,26,18,25,17,24), (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,25)(8,26)(9,27)(10,28)(11,29)(12,30)(13,16)(14,17)(15,18)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30), (1,9,2,10,3,11,4,12,5,13,6,14,7,15,8)(16,23,30,22,29,21,28,20,27,19,26,18,25,17,24), (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,25)(8,26)(9,27)(10,28)(11,29)(12,30)(13,16)(14,17)(15,18) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)], [(1,9,2,10,3,11,4,12,5,13,6,14,7,15,8),(16,23,30,22,29,21,28,20,27,19,26,18,25,17,24)], [(1,19),(2,20),(3,21),(4,22),(5,23),(6,24),(7,25),(8,26),(9,27),(10,28),(11,29),(12,30),(13,16),(14,17),(15,18)]])

G:=TransitiveGroup(30,104);

135 conjugacy classes

class 1  2 3A3B3C3D3E5A5B5C5D5E···5N6A6B10A10B10C10D15A···15H15I···15CV30A···30H
order123333355555···5661010101015···1515···1530···30
size1151122211112···21515151515151···12···215···15

135 irreducible representations

dim11111111222222222222
type+++++
imageC1C2C3C5C6C10C15C30S3D5C3xS3C5xS3C3xD5D15C5xD5S3xC15C3xD15D5xC15C5xD15C15xD15
kernelC15xD15C152C5xD15C3xD15C5xC15C3xC15D15C15C5xC15C3xC15C52C15C15C15C32C5C5C3C3C1
# reps11242488122444888161632

Matrix representation of C15xD15 in GL2(F31) generated by

100
010
,
140
1220
,
1121
1220
G:=sub<GL(2,GF(31))| [10,0,0,10],[14,12,0,20],[11,12,21,20] >;

C15xD15 in GAP, Magma, Sage, TeX

C_{15}\times D_{15}
% in TeX

G:=Group("C15xD15");
// GroupNames label

G:=SmallGroup(450,29);
// by ID

G=gap.SmallGroup(450,29);
# by ID

G:=PCGroup([5,-2,-3,-5,-3,-5,1203,9004]);
// Polycyclic

G:=Group<a,b,c|a^15=b^15=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C15xD15 in TeX

׿
x
:
Z
F
o
wr
Q
<