Extensions 1→N→G→Q→1 with N=C2×C4 and Q=D29

Direct product G=N×Q with N=C2×C4 and Q=D29
dρLabelID
C2×C4×D29232C2xC4xD29464,36

Semidirect products G=N:Q with N=C2×C4 and Q=D29
extensionφ:Q→Aut NdρLabelID
(C2×C4)⋊1D29 = D58⋊C4φ: D29/C29C2 ⊆ Aut C2×C4232(C2xC4):1D29464,14
(C2×C4)⋊2D29 = C2×D116φ: D29/C29C2 ⊆ Aut C2×C4232(C2xC4):2D29464,37
(C2×C4)⋊3D29 = D1165C2φ: D29/C29C2 ⊆ Aut C2×C42322(C2xC4):3D29464,38

Non-split extensions G=N.Q with N=C2×C4 and Q=D29
extensionφ:Q→Aut NdρLabelID
(C2×C4).1D29 = C58.D4φ: D29/C29C2 ⊆ Aut C2×C4464(C2xC4).1D29464,12
(C2×C4).2D29 = C4.Dic29φ: D29/C29C2 ⊆ Aut C2×C42322(C2xC4).2D29464,10
(C2×C4).3D29 = C4⋊Dic29φ: D29/C29C2 ⊆ Aut C2×C4464(C2xC4).3D29464,13
(C2×C4).4D29 = C2×Dic58φ: D29/C29C2 ⊆ Aut C2×C4464(C2xC4).4D29464,35
(C2×C4).5D29 = C2×C292C8central extension (φ=1)464(C2xC4).5D29464,9
(C2×C4).6D29 = C4×Dic29central extension (φ=1)464(C2xC4).6D29464,11

׿
×
𝔽