Extensions 1→N→G→Q→1 with N=C6 and Q=C2×C38

Direct product G=N×Q with N=C6 and Q=C2×C38

Semidirect products G=N:Q with N=C6 and Q=C2×C38
extensionφ:Q→Aut NdρLabelID
C6⋊(C2×C38) = S3×C2×C38φ: C2×C38/C38C2 ⊆ Aut C6228C6:(C2xC38)456,52

Non-split extensions G=N.Q with N=C6 and Q=C2×C38
extensionφ:Q→Aut NdρLabelID
C6.1(C2×C38) = C19×Dic6φ: C2×C38/C38C2 ⊆ Aut C64562C6.1(C2xC38)456,29
C6.2(C2×C38) = S3×C76φ: C2×C38/C38C2 ⊆ Aut C62282C6.2(C2xC38)456,30
C6.3(C2×C38) = C19×D12φ: C2×C38/C38C2 ⊆ Aut C62282C6.3(C2xC38)456,31
C6.4(C2×C38) = Dic3×C38φ: C2×C38/C38C2 ⊆ Aut C6456C6.4(C2xC38)456,32
C6.5(C2×C38) = C19×C3⋊D4φ: C2×C38/C38C2 ⊆ Aut C62282C6.5(C2xC38)456,33
C6.6(C2×C38) = D4×C57central extension (φ=1)2282C6.6(C2xC38)456,40
C6.7(C2×C38) = Q8×C57central extension (φ=1)4562C6.7(C2xC38)456,41