direct product, abelian, monomial, 2-elementary
Aliases: C2×C38, SmallGroup(76,4)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2×C38 |
C1 — C2×C38 |
C1 — C2×C38 |
Generators and relations for C2×C38
G = < a,b | a2=b38=1, ab=ba >
(1 69)(2 70)(3 71)(4 72)(5 73)(6 74)(7 75)(8 76)(9 39)(10 40)(11 41)(12 42)(13 43)(14 44)(15 45)(16 46)(17 47)(18 48)(19 49)(20 50)(21 51)(22 52)(23 53)(24 54)(25 55)(26 56)(27 57)(28 58)(29 59)(30 60)(31 61)(32 62)(33 63)(34 64)(35 65)(36 66)(37 67)(38 68)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38)(39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76)
G:=sub<Sym(76)| (1,69)(2,70)(3,71)(4,72)(5,73)(6,74)(7,75)(8,76)(9,39)(10,40)(11,41)(12,42)(13,43)(14,44)(15,45)(16,46)(17,47)(18,48)(19,49)(20,50)(21,51)(22,52)(23,53)(24,54)(25,55)(26,56)(27,57)(28,58)(29,59)(30,60)(31,61)(32,62)(33,63)(34,64)(35,65)(36,66)(37,67)(38,68), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76)>;
G:=Group( (1,69)(2,70)(3,71)(4,72)(5,73)(6,74)(7,75)(8,76)(9,39)(10,40)(11,41)(12,42)(13,43)(14,44)(15,45)(16,46)(17,47)(18,48)(19,49)(20,50)(21,51)(22,52)(23,53)(24,54)(25,55)(26,56)(27,57)(28,58)(29,59)(30,60)(31,61)(32,62)(33,63)(34,64)(35,65)(36,66)(37,67)(38,68), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76) );
G=PermutationGroup([[(1,69),(2,70),(3,71),(4,72),(5,73),(6,74),(7,75),(8,76),(9,39),(10,40),(11,41),(12,42),(13,43),(14,44),(15,45),(16,46),(17,47),(18,48),(19,49),(20,50),(21,51),(22,52),(23,53),(24,54),(25,55),(26,56),(27,57),(28,58),(29,59),(30,60),(31,61),(32,62),(33,63),(34,64),(35,65),(36,66),(37,67),(38,68)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38),(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76)]])
C2×C38 is a maximal subgroup of
C19⋊D4 C19⋊A4
76 conjugacy classes
class | 1 | 2A | 2B | 2C | 19A | ··· | 19R | 38A | ··· | 38BB |
order | 1 | 2 | 2 | 2 | 19 | ··· | 19 | 38 | ··· | 38 |
size | 1 | 1 | 1 | 1 | 1 | ··· | 1 | 1 | ··· | 1 |
76 irreducible representations
dim | 1 | 1 | 1 | 1 |
type | + | + | ||
image | C1 | C2 | C19 | C38 |
kernel | C2×C38 | C38 | C22 | C2 |
# reps | 1 | 3 | 18 | 54 |
Matrix representation of C2×C38 ►in GL2(𝔽191) generated by
190 | 0 |
0 | 190 |
180 | 0 |
0 | 122 |
G:=sub<GL(2,GF(191))| [190,0,0,190],[180,0,0,122] >;
C2×C38 in GAP, Magma, Sage, TeX
C_2\times C_{38}
% in TeX
G:=Group("C2xC38");
// GroupNames label
G:=SmallGroup(76,4);
// by ID
G=gap.SmallGroup(76,4);
# by ID
G:=PCGroup([3,-2,-2,-19]);
// Polycyclic
G:=Group<a,b|a^2=b^38=1,a*b=b*a>;
// generators/relations
Export