Extensions 1→N→G→Q→1 with N=C2×C58 and Q=C4

Direct product G=N×Q with N=C2×C58 and Q=C4
dρLabelID
C22×C116464C2^2xC116464,45

Semidirect products G=N:Q with N=C2×C58 and Q=C4
extensionφ:Q→Aut NdρLabelID
(C2×C58)⋊1C4 = D29.D4φ: C4/C1C4 ⊆ Aut C2×C581164+(C2xC58):1C4464,34
(C2×C58)⋊2C4 = C22×C29⋊C4φ: C4/C1C4 ⊆ Aut C2×C58116(C2xC58):2C4464,49
(C2×C58)⋊3C4 = C22⋊C4×C29φ: C4/C2C2 ⊆ Aut C2×C58232(C2xC58):3C4464,21
(C2×C58)⋊4C4 = C23.D29φ: C4/C2C2 ⊆ Aut C2×C58232(C2xC58):4C4464,19
(C2×C58)⋊5C4 = C22×Dic29φ: C4/C2C2 ⊆ Aut C2×C58464(C2xC58):5C4464,43

Non-split extensions G=N.Q with N=C2×C58 and Q=C4
extensionφ:Q→Aut NdρLabelID
(C2×C58).1C4 = C2×C29⋊C8φ: C4/C1C4 ⊆ Aut C2×C58464(C2xC58).1C4464,32
(C2×C58).2C4 = C29⋊M4(2)φ: C4/C1C4 ⊆ Aut C2×C582324-(C2xC58).2C4464,33
(C2×C58).3C4 = M4(2)×C29φ: C4/C2C2 ⊆ Aut C2×C582322(C2xC58).3C4464,24
(C2×C58).4C4 = C2×C292C8φ: C4/C2C2 ⊆ Aut C2×C58464(C2xC58).4C4464,9
(C2×C58).5C4 = C4.Dic29φ: C4/C2C2 ⊆ Aut C2×C582322(C2xC58).5C4464,10

׿
×
𝔽