Copied to
clipboard

G = D29.D4order 464 = 24·29

The non-split extension by D29 of D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D582C4, D29.2D4, D58.6C22, (C2×C58)⋊1C4, C29⋊(C22⋊C4), C22⋊(C29⋊C4), C58.7(C2×C4), (C22×D29).2C2, (C2×C29⋊C4)⋊C2, C2.7(C2×C29⋊C4), SmallGroup(464,34)

Series: Derived Chief Lower central Upper central

C1C58 — D29.D4
C1C29D29D58C2×C29⋊C4 — D29.D4
C29C58 — D29.D4
C1C2C22

Generators and relations for D29.D4
 G = < a,b,c,d | a29=b2=c4=1, d2=a-1b, bab=a-1, cac-1=dad-1=a17, cbc-1=dbd-1=a16b, dcd-1=a-1bc-1 >

2C2
29C2
29C2
58C2
29C22
29C22
58C4
58C4
58C22
58C22
2D29
2C58
29C23
29C2×C4
29C2×C4
2C29⋊C4
2D58
2D58
2C29⋊C4
29C22⋊C4

Smallest permutation representation of D29.D4
On 116 points
Generators in S116
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29)(30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58)(59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87)(88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116)
(1 29)(2 28)(3 27)(4 26)(5 25)(6 24)(7 23)(8 22)(9 21)(10 20)(11 19)(12 18)(13 17)(14 16)(30 57)(31 56)(32 55)(33 54)(34 53)(35 52)(36 51)(37 50)(38 49)(39 48)(40 47)(41 46)(42 45)(43 44)(59 65)(60 64)(61 63)(66 87)(67 86)(68 85)(69 84)(70 83)(71 82)(72 81)(73 80)(74 79)(75 78)(76 77)(88 92)(89 91)(93 116)(94 115)(95 114)(96 113)(97 112)(98 111)(99 110)(100 109)(101 108)(102 107)(103 106)(104 105)
(1 77 44 105)(2 60 43 93)(3 72 42 110)(4 84 41 98)(5 67 40 115)(6 79 39 103)(7 62 38 91)(8 74 37 108)(9 86 36 96)(10 69 35 113)(11 81 34 101)(12 64 33 89)(13 76 32 106)(14 59 31 94)(15 71 30 111)(16 83 58 99)(17 66 57 116)(18 78 56 104)(19 61 55 92)(20 73 54 109)(21 85 53 97)(22 68 52 114)(23 80 51 102)(24 63 50 90)(25 75 49 107)(26 87 48 95)(27 70 47 112)(28 82 46 100)(29 65 45 88)
(2 13 29 18)(3 25 28 6)(4 8 27 23)(5 20 26 11)(7 15 24 16)(9 10 22 21)(12 17 19 14)(30 50 58 38)(31 33 57 55)(32 45 56 43)(34 40 54 48)(35 52 53 36)(37 47 51 41)(39 42 49 46)(59 92 66 89)(60 104 65 106)(61 116 64 94)(62 99 63 111)(67 101 87 109)(68 113 86 97)(69 96 85 114)(70 108 84 102)(71 91 83 90)(72 103 82 107)(73 115 81 95)(74 98 80 112)(75 110 79 100)(76 93 78 88)(77 105)

G:=sub<Sym(116)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29)(30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58)(59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87)(88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116), (1,29)(2,28)(3,27)(4,26)(5,25)(6,24)(7,23)(8,22)(9,21)(10,20)(11,19)(12,18)(13,17)(14,16)(30,57)(31,56)(32,55)(33,54)(34,53)(35,52)(36,51)(37,50)(38,49)(39,48)(40,47)(41,46)(42,45)(43,44)(59,65)(60,64)(61,63)(66,87)(67,86)(68,85)(69,84)(70,83)(71,82)(72,81)(73,80)(74,79)(75,78)(76,77)(88,92)(89,91)(93,116)(94,115)(95,114)(96,113)(97,112)(98,111)(99,110)(100,109)(101,108)(102,107)(103,106)(104,105), (1,77,44,105)(2,60,43,93)(3,72,42,110)(4,84,41,98)(5,67,40,115)(6,79,39,103)(7,62,38,91)(8,74,37,108)(9,86,36,96)(10,69,35,113)(11,81,34,101)(12,64,33,89)(13,76,32,106)(14,59,31,94)(15,71,30,111)(16,83,58,99)(17,66,57,116)(18,78,56,104)(19,61,55,92)(20,73,54,109)(21,85,53,97)(22,68,52,114)(23,80,51,102)(24,63,50,90)(25,75,49,107)(26,87,48,95)(27,70,47,112)(28,82,46,100)(29,65,45,88), (2,13,29,18)(3,25,28,6)(4,8,27,23)(5,20,26,11)(7,15,24,16)(9,10,22,21)(12,17,19,14)(30,50,58,38)(31,33,57,55)(32,45,56,43)(34,40,54,48)(35,52,53,36)(37,47,51,41)(39,42,49,46)(59,92,66,89)(60,104,65,106)(61,116,64,94)(62,99,63,111)(67,101,87,109)(68,113,86,97)(69,96,85,114)(70,108,84,102)(71,91,83,90)(72,103,82,107)(73,115,81,95)(74,98,80,112)(75,110,79,100)(76,93,78,88)(77,105)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29)(30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58)(59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87)(88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116), (1,29)(2,28)(3,27)(4,26)(5,25)(6,24)(7,23)(8,22)(9,21)(10,20)(11,19)(12,18)(13,17)(14,16)(30,57)(31,56)(32,55)(33,54)(34,53)(35,52)(36,51)(37,50)(38,49)(39,48)(40,47)(41,46)(42,45)(43,44)(59,65)(60,64)(61,63)(66,87)(67,86)(68,85)(69,84)(70,83)(71,82)(72,81)(73,80)(74,79)(75,78)(76,77)(88,92)(89,91)(93,116)(94,115)(95,114)(96,113)(97,112)(98,111)(99,110)(100,109)(101,108)(102,107)(103,106)(104,105), (1,77,44,105)(2,60,43,93)(3,72,42,110)(4,84,41,98)(5,67,40,115)(6,79,39,103)(7,62,38,91)(8,74,37,108)(9,86,36,96)(10,69,35,113)(11,81,34,101)(12,64,33,89)(13,76,32,106)(14,59,31,94)(15,71,30,111)(16,83,58,99)(17,66,57,116)(18,78,56,104)(19,61,55,92)(20,73,54,109)(21,85,53,97)(22,68,52,114)(23,80,51,102)(24,63,50,90)(25,75,49,107)(26,87,48,95)(27,70,47,112)(28,82,46,100)(29,65,45,88), (2,13,29,18)(3,25,28,6)(4,8,27,23)(5,20,26,11)(7,15,24,16)(9,10,22,21)(12,17,19,14)(30,50,58,38)(31,33,57,55)(32,45,56,43)(34,40,54,48)(35,52,53,36)(37,47,51,41)(39,42,49,46)(59,92,66,89)(60,104,65,106)(61,116,64,94)(62,99,63,111)(67,101,87,109)(68,113,86,97)(69,96,85,114)(70,108,84,102)(71,91,83,90)(72,103,82,107)(73,115,81,95)(74,98,80,112)(75,110,79,100)(76,93,78,88)(77,105) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29),(30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58),(59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87),(88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116)], [(1,29),(2,28),(3,27),(4,26),(5,25),(6,24),(7,23),(8,22),(9,21),(10,20),(11,19),(12,18),(13,17),(14,16),(30,57),(31,56),(32,55),(33,54),(34,53),(35,52),(36,51),(37,50),(38,49),(39,48),(40,47),(41,46),(42,45),(43,44),(59,65),(60,64),(61,63),(66,87),(67,86),(68,85),(69,84),(70,83),(71,82),(72,81),(73,80),(74,79),(75,78),(76,77),(88,92),(89,91),(93,116),(94,115),(95,114),(96,113),(97,112),(98,111),(99,110),(100,109),(101,108),(102,107),(103,106),(104,105)], [(1,77,44,105),(2,60,43,93),(3,72,42,110),(4,84,41,98),(5,67,40,115),(6,79,39,103),(7,62,38,91),(8,74,37,108),(9,86,36,96),(10,69,35,113),(11,81,34,101),(12,64,33,89),(13,76,32,106),(14,59,31,94),(15,71,30,111),(16,83,58,99),(17,66,57,116),(18,78,56,104),(19,61,55,92),(20,73,54,109),(21,85,53,97),(22,68,52,114),(23,80,51,102),(24,63,50,90),(25,75,49,107),(26,87,48,95),(27,70,47,112),(28,82,46,100),(29,65,45,88)], [(2,13,29,18),(3,25,28,6),(4,8,27,23),(5,20,26,11),(7,15,24,16),(9,10,22,21),(12,17,19,14),(30,50,58,38),(31,33,57,55),(32,45,56,43),(34,40,54,48),(35,52,53,36),(37,47,51,41),(39,42,49,46),(59,92,66,89),(60,104,65,106),(61,116,64,94),(62,99,63,111),(67,101,87,109),(68,113,86,97),(69,96,85,114),(70,108,84,102),(71,91,83,90),(72,103,82,107),(73,115,81,95),(74,98,80,112),(75,110,79,100),(76,93,78,88),(77,105)]])

38 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D29A···29G58A···58U
order122222444429···2958···58
size112292958585858584···44···4

38 irreducible representations

dim111112444
type+++++++
imageC1C2C2C4C4D4C29⋊C4C2×C29⋊C4D29.D4
kernelD29.D4C2×C29⋊C4C22×D29D58C2×C58D29C22C2C1
# reps1212227714

Matrix representation of D29.D4 in GL6(𝔽233)

100000
010000
0029100
00189010
0082001
0021499132118
,
23200000
02320000
004515923184
00226907119
007521310287
0027124177229
,
1041770000
1641290000
00194721404
00331688216
0017530933
001577515295
,
14400000
202890000
00194721404
00331688216
0017530933
001577515295

G:=sub<GL(6,GF(233))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,29,189,82,214,0,0,1,0,0,99,0,0,0,1,0,132,0,0,0,0,1,118],[232,0,0,0,0,0,0,232,0,0,0,0,0,0,45,226,75,27,0,0,159,90,213,124,0,0,231,71,102,177,0,0,84,19,87,229],[104,164,0,0,0,0,177,129,0,0,0,0,0,0,194,33,175,157,0,0,72,168,30,75,0,0,140,8,9,152,0,0,4,216,33,95],[144,202,0,0,0,0,0,89,0,0,0,0,0,0,194,33,175,157,0,0,72,168,30,75,0,0,140,8,9,152,0,0,4,216,33,95] >;

D29.D4 in GAP, Magma, Sage, TeX

D_{29}.D_4
% in TeX

G:=Group("D29.D4");
// GroupNames label

G:=SmallGroup(464,34);
// by ID

G=gap.SmallGroup(464,34);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-29,20,101,4804,2814]);
// Polycyclic

G:=Group<a,b,c,d|a^29=b^2=c^4=1,d^2=a^-1*b,b*a*b=a^-1,c*a*c^-1=d*a*d^-1=a^17,c*b*c^-1=d*b*d^-1=a^16*b,d*c*d^-1=a^-1*b*c^-1>;
// generators/relations

Export

Subgroup lattice of D29.D4 in TeX

׿
×
𝔽