# Extensions 1→N→G→Q→1 with N=C6×D5 and Q=C8

Direct product G=N×Q with N=C6×D5 and Q=C8
dρLabelID
D5×C2×C24240D5xC2xC24480,692

Semidirect products G=N:Q with N=C6×D5 and Q=C8
extensionφ:Q→Out NdρLabelID
(C6×D5)⋊1C8 = C60.93D4φ: C8/C4C2 ⊆ Out C6×D5240(C6xD5):1C8480,31
(C6×D5)⋊2C8 = C2×D5×C3⋊C8φ: C8/C4C2 ⊆ Out C6×D5240(C6xD5):2C8480,357
(C6×D5)⋊3C8 = C3×D101C8φ: C8/C4C2 ⊆ Out C6×D5240(C6xD5):3C8480,98
(C6×D5)⋊4C8 = C30.7M4(2)φ: C8/C4C2 ⊆ Out C6×D5240(C6xD5):4C8480,308
(C6×D5)⋊5C8 = C2×C60.C4φ: C8/C4C2 ⊆ Out C6×D5240(C6xD5):5C8480,1060
(C6×D5)⋊6C8 = C3×D10⋊C8φ: C8/C4C2 ⊆ Out C6×D5240(C6xD5):6C8480,283
(C6×D5)⋊7C8 = C6×D5⋊C8φ: C8/C4C2 ⊆ Out C6×D5240(C6xD5):7C8480,1047

Non-split extensions G=N.Q with N=C6×D5 and Q=C8
extensionφ:Q→Out NdρLabelID
(C6×D5).1C8 = D5×C3⋊C16φ: C8/C4C2 ⊆ Out C6×D52404(C6xD5).1C8480,7
(C6×D5).2C8 = C40.51D6φ: C8/C4C2 ⊆ Out C6×D52404(C6xD5).2C8480,10
(C6×D5).3C8 = C3×C80⋊C2φ: C8/C4C2 ⊆ Out C6×D52402(C6xD5).3C8480,76
(C6×D5).4C8 = C24.F5φ: C8/C4C2 ⊆ Out C6×D52404(C6xD5).4C8480,294
(C6×D5).5C8 = C120.C4φ: C8/C4C2 ⊆ Out C6×D52404(C6xD5).5C8480,295
(C6×D5).6C8 = C3×D5⋊C16φ: C8/C4C2 ⊆ Out C6×D52404(C6xD5).6C8480,269
(C6×D5).7C8 = C3×C8.F5φ: C8/C4C2 ⊆ Out C6×D52404(C6xD5).7C8480,270
(C6×D5).8C8 = D5×C48φ: trivial image2402(C6xD5).8C8480,75

׿
×
𝔽