extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C6).1(C2×Dic5) = C20.5D12 | φ: C2×Dic5/C10 → C22 ⊆ Aut C2×C6 | 120 | 4 | (C2xC6).1(C2xDic5) | 480,35 |
(C2×C6).2(C2×Dic5) = C60.54D4 | φ: C2×Dic5/C10 → C22 ⊆ Aut C2×C6 | 240 | 4 | (C2xC6).2(C2xDic5) | 480,38 |
(C2×C6).3(C2×Dic5) = C15⋊8(C23⋊C4) | φ: C2×Dic5/C10 → C22 ⊆ Aut C2×C6 | 120 | 4 | (C2xC6).3(C2xDic5) | 480,72 |
(C2×C6).4(C2×Dic5) = S3×C4.Dic5 | φ: C2×Dic5/C10 → C22 ⊆ Aut C2×C6 | 120 | 4 | (C2xC6).4(C2xDic5) | 480,363 |
(C2×C6).5(C2×Dic5) = D12.Dic5 | φ: C2×Dic5/C10 → C22 ⊆ Aut C2×C6 | 240 | 4 | (C2xC6).5(C2xDic5) | 480,364 |
(C2×C6).6(C2×Dic5) = C23.26(S3×D5) | φ: C2×Dic5/C10 → C22 ⊆ Aut C2×C6 | 240 | | (C2xC6).6(C2xDic5) | 480,605 |
(C2×C6).7(C2×Dic5) = D4.Dic15 | φ: C2×Dic5/C10 → C22 ⊆ Aut C2×C6 | 240 | 4 | (C2xC6).7(C2xDic5) | 480,913 |
(C2×C6).8(C2×Dic5) = C3×D4.Dic5 | φ: C2×Dic5/Dic5 → C2 ⊆ Aut C2×C6 | 240 | 4 | (C2xC6).8(C2xDic5) | 480,741 |
(C2×C6).9(C2×Dic5) = Dic3×C5⋊2C8 | φ: C2×Dic5/Dic5 → C2 ⊆ Aut C2×C6 | 480 | | (C2xC6).9(C2xDic5) | 480,26 |
(C2×C6).10(C2×Dic5) = C30.22C42 | φ: C2×Dic5/Dic5 → C2 ⊆ Aut C2×C6 | 480 | | (C2xC6).10(C2xDic5) | 480,29 |
(C2×C6).11(C2×Dic5) = C60.94D4 | φ: C2×Dic5/Dic5 → C2 ⊆ Aut C2×C6 | 240 | | (C2xC6).11(C2xDic5) | 480,32 |
(C2×C6).12(C2×Dic5) = C60.15Q8 | φ: C2×Dic5/Dic5 → C2 ⊆ Aut C2×C6 | 480 | | (C2xC6).12(C2xDic5) | 480,60 |
(C2×C6).13(C2×Dic5) = C30.24C42 | φ: C2×Dic5/Dic5 → C2 ⊆ Aut C2×C6 | 480 | | (C2xC6).13(C2xDic5) | 480,70 |
(C2×C6).14(C2×Dic5) = C2×S3×C5⋊2C8 | φ: C2×Dic5/Dic5 → C2 ⊆ Aut C2×C6 | 240 | | (C2xC6).14(C2xDic5) | 480,361 |
(C2×C6).15(C2×Dic5) = D12.2Dic5 | φ: C2×Dic5/Dic5 → C2 ⊆ Aut C2×C6 | 240 | 4 | (C2xC6).15(C2xDic5) | 480,362 |
(C2×C6).16(C2×Dic5) = C2×D6.Dic5 | φ: C2×Dic5/Dic5 → C2 ⊆ Aut C2×C6 | 240 | | (C2xC6).16(C2xDic5) | 480,370 |
(C2×C6).17(C2×Dic5) = C2×Dic3×Dic5 | φ: C2×Dic5/Dic5 → C2 ⊆ Aut C2×C6 | 480 | | (C2xC6).17(C2xDic5) | 480,603 |
(C2×C6).18(C2×Dic5) = C2×D6⋊Dic5 | φ: C2×Dic5/Dic5 → C2 ⊆ Aut C2×C6 | 240 | | (C2xC6).18(C2xDic5) | 480,614 |
(C2×C6).19(C2×Dic5) = C2×C6.Dic10 | φ: C2×Dic5/Dic5 → C2 ⊆ Aut C2×C6 | 480 | | (C2xC6).19(C2xDic5) | 480,621 |
(C2×C6).20(C2×Dic5) = C3×C20.D4 | φ: C2×Dic5/C2×C10 → C2 ⊆ Aut C2×C6 | 120 | 4 | (C2xC6).20(C2xDic5) | 480,111 |
(C2×C6).21(C2×Dic5) = C3×C23⋊Dic5 | φ: C2×Dic5/C2×C10 → C2 ⊆ Aut C2×C6 | 120 | 4 | (C2xC6).21(C2xDic5) | 480,112 |
(C2×C6).22(C2×Dic5) = C3×C20.10D4 | φ: C2×Dic5/C2×C10 → C2 ⊆ Aut C2×C6 | 240 | 4 | (C2xC6).22(C2xDic5) | 480,114 |
(C2×C6).23(C2×Dic5) = C6×C4.Dic5 | φ: C2×Dic5/C2×C10 → C2 ⊆ Aut C2×C6 | 240 | | (C2xC6).23(C2xDic5) | 480,714 |
(C2×C6).24(C2×Dic5) = C3×C23.21D10 | φ: C2×Dic5/C2×C10 → C2 ⊆ Aut C2×C6 | 240 | | (C2xC6).24(C2xDic5) | 480,719 |
(C2×C6).25(C2×Dic5) = C4×C15⋊3C8 | φ: C2×Dic5/C2×C10 → C2 ⊆ Aut C2×C6 | 480 | | (C2xC6).25(C2xDic5) | 480,162 |
(C2×C6).26(C2×Dic5) = C42.D15 | φ: C2×Dic5/C2×C10 → C2 ⊆ Aut C2×C6 | 480 | | (C2xC6).26(C2xDic5) | 480,163 |
(C2×C6).27(C2×Dic5) = C60⋊5C8 | φ: C2×Dic5/C2×C10 → C2 ⊆ Aut C2×C6 | 480 | | (C2xC6).27(C2xDic5) | 480,164 |
(C2×C6).28(C2×Dic5) = C60.212D4 | φ: C2×Dic5/C2×C10 → C2 ⊆ Aut C2×C6 | 240 | | (C2xC6).28(C2xDic5) | 480,190 |
(C2×C6).29(C2×Dic5) = C30.29C42 | φ: C2×Dic5/C2×C10 → C2 ⊆ Aut C2×C6 | 480 | | (C2xC6).29(C2xDic5) | 480,191 |
(C2×C6).30(C2×Dic5) = C60.8D4 | φ: C2×Dic5/C2×C10 → C2 ⊆ Aut C2×C6 | 120 | 4 | (C2xC6).30(C2xDic5) | 480,193 |
(C2×C6).31(C2×Dic5) = C23.7D30 | φ: C2×Dic5/C2×C10 → C2 ⊆ Aut C2×C6 | 120 | 4 | (C2xC6).31(C2xDic5) | 480,194 |
(C2×C6).32(C2×Dic5) = C60.10D4 | φ: C2×Dic5/C2×C10 → C2 ⊆ Aut C2×C6 | 240 | 4 | (C2xC6).32(C2xDic5) | 480,196 |
(C2×C6).33(C2×Dic5) = C22×C15⋊3C8 | φ: C2×Dic5/C2×C10 → C2 ⊆ Aut C2×C6 | 480 | | (C2xC6).33(C2xDic5) | 480,885 |
(C2×C6).34(C2×Dic5) = C2×C60.7C4 | φ: C2×Dic5/C2×C10 → C2 ⊆ Aut C2×C6 | 240 | | (C2xC6).34(C2xDic5) | 480,886 |
(C2×C6).35(C2×Dic5) = C2×C4×Dic15 | φ: C2×Dic5/C2×C10 → C2 ⊆ Aut C2×C6 | 480 | | (C2xC6).35(C2xDic5) | 480,887 |
(C2×C6).36(C2×Dic5) = C2×C60⋊5C4 | φ: C2×Dic5/C2×C10 → C2 ⊆ Aut C2×C6 | 480 | | (C2xC6).36(C2xDic5) | 480,890 |
(C2×C6).37(C2×Dic5) = C23.26D30 | φ: C2×Dic5/C2×C10 → C2 ⊆ Aut C2×C6 | 240 | | (C2xC6).37(C2xDic5) | 480,891 |
(C2×C6).38(C2×Dic5) = C12×C5⋊2C8 | central extension (φ=1) | 480 | | (C2xC6).38(C2xDic5) | 480,80 |
(C2×C6).39(C2×Dic5) = C3×C42.D5 | central extension (φ=1) | 480 | | (C2xC6).39(C2xDic5) | 480,81 |
(C2×C6).40(C2×Dic5) = C3×C20⋊3C8 | central extension (φ=1) | 480 | | (C2xC6).40(C2xDic5) | 480,82 |
(C2×C6).41(C2×Dic5) = C3×C20.55D4 | central extension (φ=1) | 240 | | (C2xC6).41(C2xDic5) | 480,108 |
(C2×C6).42(C2×Dic5) = C3×C10.10C42 | central extension (φ=1) | 480 | | (C2xC6).42(C2xDic5) | 480,109 |
(C2×C6).43(C2×Dic5) = C2×C6×C5⋊2C8 | central extension (φ=1) | 480 | | (C2xC6).43(C2xDic5) | 480,713 |
(C2×C6).44(C2×Dic5) = Dic5×C2×C12 | central extension (φ=1) | 480 | | (C2xC6).44(C2xDic5) | 480,715 |
(C2×C6).45(C2×Dic5) = C6×C4⋊Dic5 | central extension (φ=1) | 480 | | (C2xC6).45(C2xDic5) | 480,718 |