Copied to
clipboard

G = C20.5D12order 480 = 25·3·5

5th non-split extension by C20 of D12 acting via D12/C6=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C20.5D12, C60.53D4, (C2×D12).5D5, (C2×C20).41D6, C4.Dic52S3, C60.7C42C2, (C10×D12).1C2, (C2×C12).42D10, C31(C20.D4), C20.5(C3⋊D4), C12.6(C5⋊D4), C153(C4.D4), C10.39(D6⋊C4), (C22×S3).Dic5, C4.12(C15⋊D4), C54(C12.46D4), C4.19(C5⋊D12), C2.3(D6⋊Dic5), (C2×C60).22C22, C6.2(C23.D5), C22.3(S3×Dic5), C30.42(C22⋊C4), (S3×C2×C10).1C4, (C2×C4).2(S3×D5), (C2×C30).81(C2×C4), (C2×C10).70(C4×S3), (C3×C4.Dic5)⋊1C2, (C2×C6).1(C2×Dic5), SmallGroup(480,35)

Series: Derived Chief Lower central Upper central

C1C2×C30 — C20.5D12
C1C5C15C30C60C2×C60C3×C4.Dic5 — C20.5D12
C15C30C2×C30 — C20.5D12
C1C2C2×C4

Generators and relations for C20.5D12
 G = < a,b,c | a60=1, b4=a30, c2=a45, bab-1=a-1, cac-1=a49, cbc-1=a15b3 >

Subgroups: 380 in 92 conjugacy classes, 34 normal (30 characteristic)
C1, C2, C2, C3, C4, C22, C22, C5, S3, C6, C6, C8, C2×C4, D4, C23, C10, C10, C12, D6, C2×C6, C15, M4(2), C2×D4, C20, C2×C10, C2×C10, C3⋊C8, C24, D12, C2×C12, C22×S3, C5×S3, C30, C30, C4.D4, C52C8, C2×C20, C5×D4, C22×C10, C4.Dic3, C3×M4(2), C2×D12, C60, S3×C10, C2×C30, C4.Dic5, C4.Dic5, D4×C10, C12.46D4, C3×C52C8, C153C8, C5×D12, C2×C60, S3×C2×C10, C20.D4, C3×C4.Dic5, C60.7C4, C10×D12, C20.5D12
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, D5, D6, C22⋊C4, Dic5, D10, C4×S3, D12, C3⋊D4, C4.D4, C2×Dic5, C5⋊D4, D6⋊C4, S3×D5, C23.D5, C12.46D4, S3×Dic5, C15⋊D4, C5⋊D12, C20.D4, D6⋊Dic5, C20.5D12

Smallest permutation representation of C20.5D12
On 120 points
Generators in S120
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 76 46 91 31 106 16 61)(2 75 47 90 32 105 17 120)(3 74 48 89 33 104 18 119)(4 73 49 88 34 103 19 118)(5 72 50 87 35 102 20 117)(6 71 51 86 36 101 21 116)(7 70 52 85 37 100 22 115)(8 69 53 84 38 99 23 114)(9 68 54 83 39 98 24 113)(10 67 55 82 40 97 25 112)(11 66 56 81 41 96 26 111)(12 65 57 80 42 95 27 110)(13 64 58 79 43 94 28 109)(14 63 59 78 44 93 29 108)(15 62 60 77 45 92 30 107)
(1 106 46 91 31 76 16 61)(2 95 47 80 32 65 17 110)(3 84 48 69 33 114 18 99)(4 73 49 118 34 103 19 88)(5 62 50 107 35 92 20 77)(6 111 51 96 36 81 21 66)(7 100 52 85 37 70 22 115)(8 89 53 74 38 119 23 104)(9 78 54 63 39 108 24 93)(10 67 55 112 40 97 25 82)(11 116 56 101 41 86 26 71)(12 105 57 90 42 75 27 120)(13 94 58 79 43 64 28 109)(14 83 59 68 44 113 29 98)(15 72 60 117 45 102 30 87)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,76,46,91,31,106,16,61)(2,75,47,90,32,105,17,120)(3,74,48,89,33,104,18,119)(4,73,49,88,34,103,19,118)(5,72,50,87,35,102,20,117)(6,71,51,86,36,101,21,116)(7,70,52,85,37,100,22,115)(8,69,53,84,38,99,23,114)(9,68,54,83,39,98,24,113)(10,67,55,82,40,97,25,112)(11,66,56,81,41,96,26,111)(12,65,57,80,42,95,27,110)(13,64,58,79,43,94,28,109)(14,63,59,78,44,93,29,108)(15,62,60,77,45,92,30,107), (1,106,46,91,31,76,16,61)(2,95,47,80,32,65,17,110)(3,84,48,69,33,114,18,99)(4,73,49,118,34,103,19,88)(5,62,50,107,35,92,20,77)(6,111,51,96,36,81,21,66)(7,100,52,85,37,70,22,115)(8,89,53,74,38,119,23,104)(9,78,54,63,39,108,24,93)(10,67,55,112,40,97,25,82)(11,116,56,101,41,86,26,71)(12,105,57,90,42,75,27,120)(13,94,58,79,43,64,28,109)(14,83,59,68,44,113,29,98)(15,72,60,117,45,102,30,87)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,76,46,91,31,106,16,61)(2,75,47,90,32,105,17,120)(3,74,48,89,33,104,18,119)(4,73,49,88,34,103,19,118)(5,72,50,87,35,102,20,117)(6,71,51,86,36,101,21,116)(7,70,52,85,37,100,22,115)(8,69,53,84,38,99,23,114)(9,68,54,83,39,98,24,113)(10,67,55,82,40,97,25,112)(11,66,56,81,41,96,26,111)(12,65,57,80,42,95,27,110)(13,64,58,79,43,94,28,109)(14,63,59,78,44,93,29,108)(15,62,60,77,45,92,30,107), (1,106,46,91,31,76,16,61)(2,95,47,80,32,65,17,110)(3,84,48,69,33,114,18,99)(4,73,49,118,34,103,19,88)(5,62,50,107,35,92,20,77)(6,111,51,96,36,81,21,66)(7,100,52,85,37,70,22,115)(8,89,53,74,38,119,23,104)(9,78,54,63,39,108,24,93)(10,67,55,112,40,97,25,82)(11,116,56,101,41,86,26,71)(12,105,57,90,42,75,27,120)(13,94,58,79,43,64,28,109)(14,83,59,68,44,113,29,98)(15,72,60,117,45,102,30,87) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,76,46,91,31,106,16,61),(2,75,47,90,32,105,17,120),(3,74,48,89,33,104,18,119),(4,73,49,88,34,103,19,118),(5,72,50,87,35,102,20,117),(6,71,51,86,36,101,21,116),(7,70,52,85,37,100,22,115),(8,69,53,84,38,99,23,114),(9,68,54,83,39,98,24,113),(10,67,55,82,40,97,25,112),(11,66,56,81,41,96,26,111),(12,65,57,80,42,95,27,110),(13,64,58,79,43,94,28,109),(14,63,59,78,44,93,29,108),(15,62,60,77,45,92,30,107)], [(1,106,46,91,31,76,16,61),(2,95,47,80,32,65,17,110),(3,84,48,69,33,114,18,99),(4,73,49,118,34,103,19,88),(5,62,50,107,35,92,20,77),(6,111,51,96,36,81,21,66),(7,100,52,85,37,70,22,115),(8,89,53,74,38,119,23,104),(9,78,54,63,39,108,24,93),(10,67,55,112,40,97,25,82),(11,116,56,101,41,86,26,71),(12,105,57,90,42,75,27,120),(13,94,58,79,43,64,28,109),(14,83,59,68,44,113,29,98),(15,72,60,117,45,102,30,87)]])

57 conjugacy classes

class 1 2A2B2C2D 3 4A4B5A5B6A6B8A8B8C8D10A···10F10G···10N12A12B12C15A15B20A20B20C20D24A24B24C24D30A···30F60A···60H
order122223445566888810···1010···101212121515202020202424242430···3060···60
size11212122222224202060602···212···12224444444202020204···44···4

57 irreducible representations

dim11111222222222244444444
type+++++++++-++++-+-
imageC1C2C2C2C4S3D4D5D6D10Dic5D12C3⋊D4C4×S3C5⋊D4C4.D4S3×D5C12.46D4C15⋊D4C5⋊D12S3×Dic5C20.D4C20.5D12
kernelC20.5D12C3×C4.Dic5C60.7C4C10×D12S3×C2×C10C4.Dic5C60C2×D12C2×C20C2×C12C22×S3C20C20C2×C10C12C15C2×C4C5C4C4C22C3C1
# reps11114122124222812222248

Matrix representation of C20.5D12 in GL8(𝔽241)

2050000000
2487000000
0022600000
000160000
00005419100
000012118700
000019273185144
0000184998756
,
1832000000
133223000000
0001770000
006400000
0000202030
0000149077240
0000234144390
00003656760
,
223209000000
10818000000
006400000
0001770000
0000202030
000016201031
0000234144390
000017156760

G:=sub<GL(8,GF(241))| [205,24,0,0,0,0,0,0,0,87,0,0,0,0,0,0,0,0,226,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,54,121,192,184,0,0,0,0,191,187,73,99,0,0,0,0,0,0,185,87,0,0,0,0,0,0,144,56],[18,133,0,0,0,0,0,0,32,223,0,0,0,0,0,0,0,0,0,64,0,0,0,0,0,0,177,0,0,0,0,0,0,0,0,0,202,149,234,36,0,0,0,0,0,0,144,56,0,0,0,0,3,77,39,76,0,0,0,0,0,240,0,0],[223,108,0,0,0,0,0,0,209,18,0,0,0,0,0,0,0,0,64,0,0,0,0,0,0,0,0,177,0,0,0,0,0,0,0,0,202,162,234,171,0,0,0,0,0,0,144,56,0,0,0,0,3,103,39,76,0,0,0,0,0,1,0,0] >;

C20.5D12 in GAP, Magma, Sage, TeX

C_{20}._5D_{12}
% in TeX

G:=Group("C20.5D12");
// GroupNames label

G:=SmallGroup(480,35);
// by ID

G=gap.SmallGroup(480,35);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,28,141,219,100,675,1356,18822]);
// Polycyclic

G:=Group<a,b,c|a^60=1,b^4=a^30,c^2=a^45,b*a*b^-1=a^-1,c*a*c^-1=a^49,c*b*c^-1=a^15*b^3>;
// generators/relations

׿
×
𝔽