# Extensions 1→N→G→Q→1 with N=C10.D4 and Q=C6

Direct product G=N×Q with N=C10.D4 and Q=C6
dρLabelID
C6×C10.D4480C6xC10.D4480,716

Semidirect products G=N:Q with N=C10.D4 and Q=C6
extensionφ:Q→Out NdρLabelID
C10.D41C6 = C3×C422D5φ: C6/C3C2 ⊆ Out C10.D4240C10.D4:1C6480,669
C10.D42C6 = C3×C20.48D4φ: C6/C3C2 ⊆ Out C10.D4240C10.D4:2C6480,717
C10.D43C6 = C3×C23.23D10φ: C6/C3C2 ⊆ Out C10.D4240C10.D4:3C6480,722
C10.D44C6 = C3×Dic5.14D4φ: C6/C3C2 ⊆ Out C10.D4240C10.D4:4C6480,671
C10.D45C6 = C3×D10⋊D4φ: C6/C3C2 ⊆ Out C10.D4240C10.D4:5C6480,677
C10.D46C6 = C3×D10.13D4φ: C6/C3C2 ⊆ Out C10.D4240C10.D4:6C6480,687
C10.D47C6 = C3×C23.11D10φ: C6/C3C2 ⊆ Out C10.D4240C10.D4:7C6480,670
C10.D48C6 = C3×C23.D10φ: C6/C3C2 ⊆ Out C10.D4240C10.D4:8C6480,672
C10.D49C6 = C3×Dic54D4φ: C6/C3C2 ⊆ Out C10.D4240C10.D4:9C6480,674
C10.D410C6 = C3×D10.12D4φ: C6/C3C2 ⊆ Out C10.D4240C10.D4:10C6480,676
C10.D411C6 = C3×D5×C4⋊C4φ: C6/C3C2 ⊆ Out C10.D4240C10.D4:11C6480,684
C10.D412C6 = C3×D10⋊Q8φ: C6/C3C2 ⊆ Out C10.D4240C10.D4:12C6480,689
C10.D413C6 = C3×C4⋊C4⋊D5φ: C6/C3C2 ⊆ Out C10.D4240C10.D4:13C6480,691
C10.D414C6 = C3×C23.18D10φ: C6/C3C2 ⊆ Out C10.D4240C10.D4:14C6480,728
C10.D415C6 = C3×Dic5⋊D4φ: C6/C3C2 ⊆ Out C10.D4240C10.D4:15C6480,732
C10.D416C6 = C3×D103Q8φ: C6/C3C2 ⊆ Out C10.D4240C10.D4:16C6480,739
C10.D417C6 = C3×C42⋊D5φ: trivial image240C10.D4:17C6480,665
C10.D418C6 = C12×C5⋊D4φ: trivial image240C10.D4:18C6480,721

Non-split extensions G=N.Q with N=C10.D4 and Q=C6
extensionφ:Q→Out NdρLabelID
C10.D4.1C6 = C3×C20.6Q8φ: C6/C3C2 ⊆ Out C10.D4480C10.D4.1C6480,663
C10.D4.2C6 = C3×C20⋊Q8φ: C6/C3C2 ⊆ Out C10.D4480C10.D4.2C6480,681
C10.D4.3C6 = C3×C4.Dic10φ: C6/C3C2 ⊆ Out C10.D4480C10.D4.3C6480,683
C10.D4.4C6 = C3×Dic53Q8φ: C6/C3C2 ⊆ Out C10.D4480C10.D4.4C6480,680
C10.D4.5C6 = C3×Dic5.Q8φ: C6/C3C2 ⊆ Out C10.D4480C10.D4.5C6480,682
C10.D4.6C6 = C3×Dic5⋊Q8φ: C6/C3C2 ⊆ Out C10.D4480C10.D4.6C6480,737
C10.D4.7C6 = C12×Dic10φ: trivial image480C10.D4.7C6480,661

׿
×
𝔽