Extensions 1→N→G→Q→1 with N=S3×C10 and Q=Q8

Direct product G=N×Q with N=S3×C10 and Q=Q8
dρLabelID
S3×Q8×C10240S3xQ8xC10480,1157

Semidirect products G=N:Q with N=S3×C10 and Q=Q8
extensionφ:Q→Out NdρLabelID
(S3×C10)⋊1Q8 = D61Dic10φ: Q8/C2C22 ⊆ Out S3×C10240(S3xC10):1Q8480,486
(S3×C10)⋊2Q8 = D62Dic10φ: Q8/C2C22 ⊆ Out S3×C10240(S3xC10):2Q8480,493
(S3×C10)⋊3Q8 = D63Dic10φ: Q8/C2C22 ⊆ Out S3×C10240(S3xC10):3Q8480,508
(S3×C10)⋊4Q8 = D64Dic10φ: Q8/C2C22 ⊆ Out S3×C10240(S3xC10):4Q8480,512
(S3×C10)⋊5Q8 = D6⋊Dic10φ: Q8/C4C2 ⊆ Out S3×C10240(S3xC10):5Q8480,428
(S3×C10)⋊6Q8 = C60.45D4φ: Q8/C4C2 ⊆ Out S3×C10240(S3xC10):6Q8480,441
(S3×C10)⋊7Q8 = C60.46D4φ: Q8/C4C2 ⊆ Out S3×C10240(S3xC10):7Q8480,445
(S3×C10)⋊8Q8 = C2×S3×Dic10φ: Q8/C4C2 ⊆ Out S3×C10240(S3xC10):8Q8480,1078
(S3×C10)⋊9Q8 = C5×D6⋊Q8φ: Q8/C4C2 ⊆ Out S3×C10240(S3xC10):9Q8480,775
(S3×C10)⋊10Q8 = C5×C4.D12φ: Q8/C4C2 ⊆ Out S3×C10240(S3xC10):10Q8480,776
(S3×C10)⋊11Q8 = C5×D63Q8φ: Q8/C4C2 ⊆ Out S3×C10240(S3xC10):11Q8480,825

Non-split extensions G=N.Q with N=S3×C10 and Q=Q8
extensionφ:Q→Out NdρLabelID
(S3×C10).1Q8 = S3×C10.D4φ: Q8/C4C2 ⊆ Out S3×C10240(S3xC10).1Q8480,475
(S3×C10).2Q8 = S3×C4⋊Dic5φ: Q8/C4C2 ⊆ Out S3×C10240(S3xC10).2Q8480,502
(S3×C10).3Q8 = C5×S3×C4⋊C4φ: trivial image240(S3xC10).3Q8480,770

׿
×
𝔽