Extensions 1→N→G→Q→1 with N=D4.D5 and Q=S3

Direct product G=N×Q with N=D4.D5 and Q=S3
dρLabelID
S3×D4.D51208-S3xD4.D5480,561

Semidirect products G=N:Q with N=D4.D5 and Q=S3
extensionφ:Q→Out NdρLabelID
D4.D51S3 = C60.10C23φ: S3/C3C2 ⊆ Out D4.D52408-D4.D5:1S3480,562
D4.D52S3 = Dic10⋊D6φ: S3/C3C2 ⊆ Out D4.D51208+D4.D5:2S3480,563
D4.D53S3 = D30.9D4φ: S3/C3C2 ⊆ Out D4.D52408-D4.D5:3S3480,564
D4.D54S3 = D12.9D10φ: S3/C3C2 ⊆ Out D4.D51208+D4.D5:4S3480,572
D4.D55S3 = D30.11D4φ: S3/C3C2 ⊆ Out D4.D52408-D4.D5:5S3480,575
D4.D56S3 = D125D10φ: S3/C3C2 ⊆ Out D4.D51208+D4.D5:6S3480,576
D4.D57S3 = C60.19C23φ: trivial image2408+D4.D5:7S3480,571


׿
×
𝔽