Copied to
clipboard

G = D12.9D10order 480 = 25·3·5

9th non-split extension by D12 of D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D12.9D10, D605C22, Dic1010D6, C60.20C23, (S3×D4)⋊3D5, C52C88D6, D4⋊D158C2, C5⋊D243C2, C56(Q83D6), D4.D54S3, D4.6(S3×D5), (C3×D4).8D10, (C4×S3).8D10, (C5×D4).23D6, D60⋊C22C2, C1519(C8⋊C22), (S3×C10).34D4, C10.146(S3×D4), C20.D64C2, C30.182(C2×D4), D6.Dic54C2, C153C810C22, D6.14(C5⋊D4), C33(D4.D10), (S3×C20).8C22, C20.20(C22×S3), (C5×Dic3).14D4, (C5×D12).6C22, C12.20(C22×D5), (C3×Dic10)⋊4C22, (D4×C15).14C22, Dic3.11(C5⋊D4), (C5×S3×D4)⋊3C2, C4.20(C2×S3×D5), (C3×D4.D5)⋊6C2, C2.27(S3×C5⋊D4), C6.49(C2×C5⋊D4), (C3×C52C8)⋊8C22, SmallGroup(480,572)

Series: Derived Chief Lower central Upper central

C1C60 — D12.9D10
C1C5C15C30C60C3×Dic10D60⋊C2 — D12.9D10
C15C30C60 — D12.9D10
C1C2C4D4

Generators and relations for D12.9D10
 G = < a,b,c,d | a12=b2=d2=1, c10=a6, bab=dad=a-1, cac-1=a5, cbc-1=a10b, dbd=a7b, dcd=c9 >

Subgroups: 732 in 136 conjugacy classes, 40 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, S3, C6, C6, C8, C2×C4, D4, D4, Q8, C23, D5, C10, C10, Dic3, C12, C12, D6, D6, C2×C6, C15, M4(2), D8, SD16, C2×D4, C4○D4, Dic5, C20, C20, D10, C2×C10, C3⋊C8, C24, C4×S3, C4×S3, D12, D12, C3⋊D4, C3×D4, C3×Q8, C22×S3, C5×S3, D15, C30, C30, C8⋊C22, C52C8, C52C8, Dic10, C4×D5, D20, C5⋊D4, C2×C20, C5×D4, C5×D4, C22×C10, C8⋊S3, D24, D4⋊S3, Q82S3, C3×SD16, S3×D4, Q83S3, C5×Dic3, C3×Dic5, C60, S3×C10, S3×C10, D30, C2×C30, C4.Dic5, D4⋊D5, D4.D5, D4.D5, C4○D20, D4×C10, Q83D6, C3×C52C8, C153C8, D30.C2, C5⋊D12, C3×Dic10, S3×C20, C5×D12, C5×C3⋊D4, D60, D4×C15, S3×C2×C10, D4.D10, D6.Dic5, C5⋊D24, C20.D6, C3×D4.D5, D4⋊D15, D60⋊C2, C5×S3×D4, D12.9D10
Quotients: C1, C2, C22, S3, D4, C23, D5, D6, C2×D4, D10, C22×S3, C8⋊C22, C5⋊D4, C22×D5, S3×D4, S3×D5, C2×C5⋊D4, Q83D6, C2×S3×D5, D4.D10, S3×C5⋊D4, D12.9D10

Smallest permutation representation of D12.9D10
On 120 points
Generators in S120
(1 108 103 6 99 94 11 118 113 16 89 84)(2 95 90 7 114 109 12 85 100 17 104 119)(3 110 105 8 81 96 13 120 115 18 91 86)(4 97 92 9 116 111 14 87 82 19 106 101)(5 112 107 10 83 98 15 102 117 20 93 88)(21 43 48 36 74 79 31 53 58 26 64 69)(22 80 65 37 59 44 32 70 75 27 49 54)(23 45 50 38 76 61 33 55 60 28 66 71)(24 62 67 39 41 46 34 72 77 29 51 56)(25 47 52 40 78 63 35 57 42 30 68 73)
(1 84)(2 109)(3 86)(4 111)(5 88)(6 113)(7 90)(8 115)(9 92)(10 117)(11 94)(12 119)(13 96)(14 101)(15 98)(16 103)(17 100)(18 105)(19 82)(20 107)(21 58)(22 65)(23 60)(24 67)(25 42)(26 69)(27 44)(28 71)(29 46)(30 73)(31 48)(32 75)(33 50)(34 77)(35 52)(36 79)(37 54)(38 61)(39 56)(40 63)(41 51)(43 53)(45 55)(47 57)(49 59)(81 120)(83 102)(85 104)(87 106)(89 108)(91 110)(93 112)(95 114)(97 116)(99 118)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 33)(2 22)(3 31)(4 40)(5 29)(6 38)(7 27)(8 36)(9 25)(10 34)(11 23)(12 32)(13 21)(14 30)(15 39)(16 28)(17 37)(18 26)(19 35)(20 24)(41 98)(42 87)(43 96)(44 85)(45 94)(46 83)(47 92)(48 81)(49 90)(50 99)(51 88)(52 97)(53 86)(54 95)(55 84)(56 93)(57 82)(58 91)(59 100)(60 89)(61 108)(62 117)(63 106)(64 115)(65 104)(66 113)(67 102)(68 111)(69 120)(70 109)(71 118)(72 107)(73 116)(74 105)(75 114)(76 103)(77 112)(78 101)(79 110)(80 119)

G:=sub<Sym(120)| (1,108,103,6,99,94,11,118,113,16,89,84)(2,95,90,7,114,109,12,85,100,17,104,119)(3,110,105,8,81,96,13,120,115,18,91,86)(4,97,92,9,116,111,14,87,82,19,106,101)(5,112,107,10,83,98,15,102,117,20,93,88)(21,43,48,36,74,79,31,53,58,26,64,69)(22,80,65,37,59,44,32,70,75,27,49,54)(23,45,50,38,76,61,33,55,60,28,66,71)(24,62,67,39,41,46,34,72,77,29,51,56)(25,47,52,40,78,63,35,57,42,30,68,73), (1,84)(2,109)(3,86)(4,111)(5,88)(6,113)(7,90)(8,115)(9,92)(10,117)(11,94)(12,119)(13,96)(14,101)(15,98)(16,103)(17,100)(18,105)(19,82)(20,107)(21,58)(22,65)(23,60)(24,67)(25,42)(26,69)(27,44)(28,71)(29,46)(30,73)(31,48)(32,75)(33,50)(34,77)(35,52)(36,79)(37,54)(38,61)(39,56)(40,63)(41,51)(43,53)(45,55)(47,57)(49,59)(81,120)(83,102)(85,104)(87,106)(89,108)(91,110)(93,112)(95,114)(97,116)(99,118), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,33)(2,22)(3,31)(4,40)(5,29)(6,38)(7,27)(8,36)(9,25)(10,34)(11,23)(12,32)(13,21)(14,30)(15,39)(16,28)(17,37)(18,26)(19,35)(20,24)(41,98)(42,87)(43,96)(44,85)(45,94)(46,83)(47,92)(48,81)(49,90)(50,99)(51,88)(52,97)(53,86)(54,95)(55,84)(56,93)(57,82)(58,91)(59,100)(60,89)(61,108)(62,117)(63,106)(64,115)(65,104)(66,113)(67,102)(68,111)(69,120)(70,109)(71,118)(72,107)(73,116)(74,105)(75,114)(76,103)(77,112)(78,101)(79,110)(80,119)>;

G:=Group( (1,108,103,6,99,94,11,118,113,16,89,84)(2,95,90,7,114,109,12,85,100,17,104,119)(3,110,105,8,81,96,13,120,115,18,91,86)(4,97,92,9,116,111,14,87,82,19,106,101)(5,112,107,10,83,98,15,102,117,20,93,88)(21,43,48,36,74,79,31,53,58,26,64,69)(22,80,65,37,59,44,32,70,75,27,49,54)(23,45,50,38,76,61,33,55,60,28,66,71)(24,62,67,39,41,46,34,72,77,29,51,56)(25,47,52,40,78,63,35,57,42,30,68,73), (1,84)(2,109)(3,86)(4,111)(5,88)(6,113)(7,90)(8,115)(9,92)(10,117)(11,94)(12,119)(13,96)(14,101)(15,98)(16,103)(17,100)(18,105)(19,82)(20,107)(21,58)(22,65)(23,60)(24,67)(25,42)(26,69)(27,44)(28,71)(29,46)(30,73)(31,48)(32,75)(33,50)(34,77)(35,52)(36,79)(37,54)(38,61)(39,56)(40,63)(41,51)(43,53)(45,55)(47,57)(49,59)(81,120)(83,102)(85,104)(87,106)(89,108)(91,110)(93,112)(95,114)(97,116)(99,118), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,33)(2,22)(3,31)(4,40)(5,29)(6,38)(7,27)(8,36)(9,25)(10,34)(11,23)(12,32)(13,21)(14,30)(15,39)(16,28)(17,37)(18,26)(19,35)(20,24)(41,98)(42,87)(43,96)(44,85)(45,94)(46,83)(47,92)(48,81)(49,90)(50,99)(51,88)(52,97)(53,86)(54,95)(55,84)(56,93)(57,82)(58,91)(59,100)(60,89)(61,108)(62,117)(63,106)(64,115)(65,104)(66,113)(67,102)(68,111)(69,120)(70,109)(71,118)(72,107)(73,116)(74,105)(75,114)(76,103)(77,112)(78,101)(79,110)(80,119) );

G=PermutationGroup([[(1,108,103,6,99,94,11,118,113,16,89,84),(2,95,90,7,114,109,12,85,100,17,104,119),(3,110,105,8,81,96,13,120,115,18,91,86),(4,97,92,9,116,111,14,87,82,19,106,101),(5,112,107,10,83,98,15,102,117,20,93,88),(21,43,48,36,74,79,31,53,58,26,64,69),(22,80,65,37,59,44,32,70,75,27,49,54),(23,45,50,38,76,61,33,55,60,28,66,71),(24,62,67,39,41,46,34,72,77,29,51,56),(25,47,52,40,78,63,35,57,42,30,68,73)], [(1,84),(2,109),(3,86),(4,111),(5,88),(6,113),(7,90),(8,115),(9,92),(10,117),(11,94),(12,119),(13,96),(14,101),(15,98),(16,103),(17,100),(18,105),(19,82),(20,107),(21,58),(22,65),(23,60),(24,67),(25,42),(26,69),(27,44),(28,71),(29,46),(30,73),(31,48),(32,75),(33,50),(34,77),(35,52),(36,79),(37,54),(38,61),(39,56),(40,63),(41,51),(43,53),(45,55),(47,57),(49,59),(81,120),(83,102),(85,104),(87,106),(89,108),(91,110),(93,112),(95,114),(97,116),(99,118)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,33),(2,22),(3,31),(4,40),(5,29),(6,38),(7,27),(8,36),(9,25),(10,34),(11,23),(12,32),(13,21),(14,30),(15,39),(16,28),(17,37),(18,26),(19,35),(20,24),(41,98),(42,87),(43,96),(44,85),(45,94),(46,83),(47,92),(48,81),(49,90),(50,99),(51,88),(52,97),(53,86),(54,95),(55,84),(56,93),(57,82),(58,91),(59,100),(60,89),(61,108),(62,117),(63,106),(64,115),(65,104),(66,113),(67,102),(68,111),(69,120),(70,109),(71,118),(72,107),(73,116),(74,105),(75,114),(76,103),(77,112),(78,101),(79,110),(80,119)]])

48 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C5A5B6A6B8A8B10A10B10C10D10E10F10G10H10I10J10K10L10M10N12A12B15A15B20A20B20C20D24A24B30A30B30C30D30E30F60A60B
order12222234445566881010101010101010101010101010121215152020202024243030303030306060
size11461260226202228206022444466661212121244044441212202044888888

48 irreducible representations

dim1111111122222222222244444448
type++++++++++++++++++++++++
imageC1C2C2C2C2C2C2C2S3D4D4D5D6D6D6D10D10D10C5⋊D4C5⋊D4C8⋊C22S3×D4S3×D5Q83D6C2×S3×D5D4.D10S3×C5⋊D4D12.9D10
kernelD12.9D10D6.Dic5C5⋊D24C20.D6C3×D4.D5D4⋊D15D60⋊C2C5×S3×D4D4.D5C5×Dic3S3×C10S3×D4C52C8Dic10C5×D4C4×S3D12C3×D4Dic3D6C15C10D4C5C4C3C2C1
# reps1111111111121112224411222442

Matrix representation of D12.9D10 in GL6(𝔽241)

100000
010000
001122
0024002390
00240240240240
001010
,
100000
010000
001122
0002400239
0000240240
000001
,
51510000
19010000
001020
00240240239239
0024002400
001111
,
231590000
31100000
00918918
0092329232
00116232232223
001161252329

G:=sub<GL(6,GF(241))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,240,240,1,0,0,1,0,240,0,0,0,2,239,240,1,0,0,2,0,240,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,240,0,0,0,0,2,0,240,0,0,0,2,239,240,1],[51,190,0,0,0,0,51,1,0,0,0,0,0,0,1,240,240,1,0,0,0,240,0,1,0,0,2,239,240,1,0,0,0,239,0,1],[231,31,0,0,0,0,59,10,0,0,0,0,0,0,9,9,116,116,0,0,18,232,232,125,0,0,9,9,232,232,0,0,18,232,223,9] >;

D12.9D10 in GAP, Magma, Sage, TeX

D_{12}._9D_{10}
% in TeX

G:=Group("D12.9D10");
// GroupNames label

G:=SmallGroup(480,572);
// by ID

G=gap.SmallGroup(480,572);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,112,120,254,219,675,185,80,1356,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^12=b^2=d^2=1,c^10=a^6,b*a*b=d*a*d=a^-1,c*a*c^-1=a^5,c*b*c^-1=a^10*b,d*b*d=a^7*b,d*c*d=c^9>;
// generators/relations

׿
×
𝔽