Extensions 1→N→G→Q→1 with N=Q8⋊D5 and Q=S3

Direct product G=N×Q with N=Q8⋊D5 and Q=S3
dρLabelID
S3×Q8⋊D51208+S3xQ8:D5480,579

Semidirect products G=N:Q with N=Q8⋊D5 and Q=S3
extensionφ:Q→Out NdρLabelID
Q8⋊D51S3 = D12⋊D10φ: S3/C3C2 ⊆ Out Q8⋊D51208+Q8:D5:1S3480,580
Q8⋊D52S3 = D15⋊SD16φ: S3/C3C2 ⊆ Out Q8⋊D51208-Q8:D5:2S3480,581
Q8⋊D53S3 = D60⋊C22φ: S3/C3C2 ⊆ Out Q8⋊D51208+Q8:D5:3S3480,582
Q8⋊D54S3 = D20.28D6φ: S3/C3C2 ⊆ Out Q8⋊D52408-Q8:D5:4S3480,594
Q8⋊D55S3 = D20.16D6φ: S3/C3C2 ⊆ Out Q8⋊D52408+Q8:D5:5S3480,597
Q8⋊D56S3 = D20.17D6φ: S3/C3C2 ⊆ Out Q8⋊D52408-Q8:D5:6S3480,598
Q8⋊D57S3 = D20.27D6φ: trivial image2408-Q8:D5:7S3480,593


׿
×
𝔽