metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D15⋊3SD16, D20.11D6, D30.41D4, D12.11D10, C60.29C23, Dic15.15D4, Dic30⋊6C22, C3⋊C8⋊18D10, Q8⋊D5⋊2S3, (C5×Q8)⋊6D6, Q8⋊6(S3×D5), C3⋊4(D5×SD16), C5⋊4(S3×SD16), C5⋊2C8⋊18D6, (Q8×D15)⋊1C2, (C3×Q8)⋊3D10, C6.75(D4×D5), Q8⋊2S3⋊2D5, C10.76(S3×D4), C15⋊15(C2×SD16), D15⋊2C8⋊5C2, D12.D5⋊5C2, C30.191(C2×D4), C6.D20⋊5C2, C20⋊D6.1C2, (Q8×C15)⋊5C22, C20.29(C22×S3), (C4×D15).9C22, C12.29(C22×D5), (C5×D12).10C22, (C3×D20).10C22, C2.28(D10⋊D6), C4.29(C2×S3×D5), (C3×Q8⋊D5)⋊3C2, (C5×C3⋊C8)⋊13C22, (C5×Q8⋊2S3)⋊3C2, (C3×C5⋊2C8)⋊13C22, SmallGroup(480,581)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D15⋊SD16
G = < a,b,c,d | a15=b2=c8=d2=1, bab=a-1, cac-1=dad=a11, cbc-1=dbd=a10b, dcd=c3 >
Subgroups: 924 in 136 conjugacy classes, 40 normal (38 characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, S3, C6, C6, C8, C2×C4, D4, Q8, Q8, C23, D5, C10, C10, Dic3, C12, C12, D6, C2×C6, C15, C2×C8, SD16, C2×D4, C2×Q8, Dic5, C20, C20, D10, C2×C10, C3⋊C8, C24, Dic6, C4×S3, D12, C3⋊D4, C3×D4, C3×Q8, C22×S3, C5×S3, C3×D5, D15, C30, C2×SD16, C5⋊2C8, C40, Dic10, C4×D5, D20, C5⋊D4, C5×D4, C5×Q8, C22×D5, S3×C8, C24⋊C2, D4.S3, Q8⋊2S3, C3×SD16, S3×D4, S3×Q8, Dic15, Dic15, C60, C60, S3×D5, C6×D5, S3×C10, D30, C8×D5, C40⋊C2, D4.D5, Q8⋊D5, C5×SD16, D4×D5, Q8×D5, S3×SD16, C5×C3⋊C8, C3×C5⋊2C8, C15⋊D4, C3×D20, C5×D12, Dic30, Dic30, C4×D15, C4×D15, Q8×C15, C2×S3×D5, D5×SD16, D15⋊2C8, C6.D20, D12.D5, C3×Q8⋊D5, C5×Q8⋊2S3, C20⋊D6, Q8×D15, D15⋊SD16
Quotients: C1, C2, C22, S3, D4, C23, D5, D6, SD16, C2×D4, D10, C22×S3, C2×SD16, C22×D5, S3×D4, S3×D5, D4×D5, S3×SD16, C2×S3×D5, D5×SD16, D10⋊D6, D15⋊SD16
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(16 30)(17 29)(18 28)(19 27)(20 26)(21 25)(22 24)(31 39)(32 38)(33 37)(34 36)(40 45)(41 44)(42 43)(47 60)(48 59)(49 58)(50 57)(51 56)(52 55)(53 54)(61 75)(62 74)(63 73)(64 72)(65 71)(66 70)(67 69)(76 90)(77 89)(78 88)(79 87)(80 86)(81 85)(82 84)(91 99)(92 98)(93 97)(94 96)(100 105)(101 104)(102 103)(106 114)(107 113)(108 112)(109 111)(115 120)(116 119)(117 118)
(1 118 43 76 16 103 54 61)(2 114 44 87 17 99 55 72)(3 110 45 83 18 95 56 68)(4 106 31 79 19 91 57 64)(5 117 32 90 20 102 58 75)(6 113 33 86 21 98 59 71)(7 109 34 82 22 94 60 67)(8 120 35 78 23 105 46 63)(9 116 36 89 24 101 47 74)(10 112 37 85 25 97 48 70)(11 108 38 81 26 93 49 66)(12 119 39 77 27 104 50 62)(13 115 40 88 28 100 51 73)(14 111 41 84 29 96 52 69)(15 107 42 80 30 92 53 65)
(2 12)(3 8)(5 15)(6 11)(9 14)(17 27)(18 23)(20 30)(21 26)(24 29)(31 57)(32 53)(33 49)(34 60)(35 56)(36 52)(37 48)(38 59)(39 55)(40 51)(41 47)(42 58)(43 54)(44 50)(45 46)(61 103)(62 99)(63 95)(64 91)(65 102)(66 98)(67 94)(68 105)(69 101)(70 97)(71 93)(72 104)(73 100)(74 96)(75 92)(76 118)(77 114)(78 110)(79 106)(80 117)(81 113)(82 109)(83 120)(84 116)(85 112)(86 108)(87 119)(88 115)(89 111)(90 107)
G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,30)(17,29)(18,28)(19,27)(20,26)(21,25)(22,24)(31,39)(32,38)(33,37)(34,36)(40,45)(41,44)(42,43)(47,60)(48,59)(49,58)(50,57)(51,56)(52,55)(53,54)(61,75)(62,74)(63,73)(64,72)(65,71)(66,70)(67,69)(76,90)(77,89)(78,88)(79,87)(80,86)(81,85)(82,84)(91,99)(92,98)(93,97)(94,96)(100,105)(101,104)(102,103)(106,114)(107,113)(108,112)(109,111)(115,120)(116,119)(117,118), (1,118,43,76,16,103,54,61)(2,114,44,87,17,99,55,72)(3,110,45,83,18,95,56,68)(4,106,31,79,19,91,57,64)(5,117,32,90,20,102,58,75)(6,113,33,86,21,98,59,71)(7,109,34,82,22,94,60,67)(8,120,35,78,23,105,46,63)(9,116,36,89,24,101,47,74)(10,112,37,85,25,97,48,70)(11,108,38,81,26,93,49,66)(12,119,39,77,27,104,50,62)(13,115,40,88,28,100,51,73)(14,111,41,84,29,96,52,69)(15,107,42,80,30,92,53,65), (2,12)(3,8)(5,15)(6,11)(9,14)(17,27)(18,23)(20,30)(21,26)(24,29)(31,57)(32,53)(33,49)(34,60)(35,56)(36,52)(37,48)(38,59)(39,55)(40,51)(41,47)(42,58)(43,54)(44,50)(45,46)(61,103)(62,99)(63,95)(64,91)(65,102)(66,98)(67,94)(68,105)(69,101)(70,97)(71,93)(72,104)(73,100)(74,96)(75,92)(76,118)(77,114)(78,110)(79,106)(80,117)(81,113)(82,109)(83,120)(84,116)(85,112)(86,108)(87,119)(88,115)(89,111)(90,107)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,30)(17,29)(18,28)(19,27)(20,26)(21,25)(22,24)(31,39)(32,38)(33,37)(34,36)(40,45)(41,44)(42,43)(47,60)(48,59)(49,58)(50,57)(51,56)(52,55)(53,54)(61,75)(62,74)(63,73)(64,72)(65,71)(66,70)(67,69)(76,90)(77,89)(78,88)(79,87)(80,86)(81,85)(82,84)(91,99)(92,98)(93,97)(94,96)(100,105)(101,104)(102,103)(106,114)(107,113)(108,112)(109,111)(115,120)(116,119)(117,118), (1,118,43,76,16,103,54,61)(2,114,44,87,17,99,55,72)(3,110,45,83,18,95,56,68)(4,106,31,79,19,91,57,64)(5,117,32,90,20,102,58,75)(6,113,33,86,21,98,59,71)(7,109,34,82,22,94,60,67)(8,120,35,78,23,105,46,63)(9,116,36,89,24,101,47,74)(10,112,37,85,25,97,48,70)(11,108,38,81,26,93,49,66)(12,119,39,77,27,104,50,62)(13,115,40,88,28,100,51,73)(14,111,41,84,29,96,52,69)(15,107,42,80,30,92,53,65), (2,12)(3,8)(5,15)(6,11)(9,14)(17,27)(18,23)(20,30)(21,26)(24,29)(31,57)(32,53)(33,49)(34,60)(35,56)(36,52)(37,48)(38,59)(39,55)(40,51)(41,47)(42,58)(43,54)(44,50)(45,46)(61,103)(62,99)(63,95)(64,91)(65,102)(66,98)(67,94)(68,105)(69,101)(70,97)(71,93)(72,104)(73,100)(74,96)(75,92)(76,118)(77,114)(78,110)(79,106)(80,117)(81,113)(82,109)(83,120)(84,116)(85,112)(86,108)(87,119)(88,115)(89,111)(90,107) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(16,30),(17,29),(18,28),(19,27),(20,26),(21,25),(22,24),(31,39),(32,38),(33,37),(34,36),(40,45),(41,44),(42,43),(47,60),(48,59),(49,58),(50,57),(51,56),(52,55),(53,54),(61,75),(62,74),(63,73),(64,72),(65,71),(66,70),(67,69),(76,90),(77,89),(78,88),(79,87),(80,86),(81,85),(82,84),(91,99),(92,98),(93,97),(94,96),(100,105),(101,104),(102,103),(106,114),(107,113),(108,112),(109,111),(115,120),(116,119),(117,118)], [(1,118,43,76,16,103,54,61),(2,114,44,87,17,99,55,72),(3,110,45,83,18,95,56,68),(4,106,31,79,19,91,57,64),(5,117,32,90,20,102,58,75),(6,113,33,86,21,98,59,71),(7,109,34,82,22,94,60,67),(8,120,35,78,23,105,46,63),(9,116,36,89,24,101,47,74),(10,112,37,85,25,97,48,70),(11,108,38,81,26,93,49,66),(12,119,39,77,27,104,50,62),(13,115,40,88,28,100,51,73),(14,111,41,84,29,96,52,69),(15,107,42,80,30,92,53,65)], [(2,12),(3,8),(5,15),(6,11),(9,14),(17,27),(18,23),(20,30),(21,26),(24,29),(31,57),(32,53),(33,49),(34,60),(35,56),(36,52),(37,48),(38,59),(39,55),(40,51),(41,47),(42,58),(43,54),(44,50),(45,46),(61,103),(62,99),(63,95),(64,91),(65,102),(66,98),(67,94),(68,105),(69,101),(70,97),(71,93),(72,104),(73,100),(74,96),(75,92),(76,118),(77,114),(78,110),(79,106),(80,117),(81,113),(82,109),(83,120),(84,116),(85,112),(86,108),(87,119),(88,115),(89,111),(90,107)]])
45 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 3 | 4A | 4B | 4C | 4D | 5A | 5B | 6A | 6B | 8A | 8B | 8C | 8D | 10A | 10B | 10C | 10D | 12A | 12B | 15A | 15B | 20A | 20B | 20C | 20D | 24A | 24B | 30A | 30B | 40A | 40B | 40C | 40D | 60A | ··· | 60F |
order | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 5 | 5 | 6 | 6 | 8 | 8 | 8 | 8 | 10 | 10 | 10 | 10 | 12 | 12 | 15 | 15 | 20 | 20 | 20 | 20 | 24 | 24 | 30 | 30 | 40 | 40 | 40 | 40 | 60 | ··· | 60 |
size | 1 | 1 | 12 | 15 | 15 | 20 | 2 | 2 | 4 | 30 | 60 | 2 | 2 | 2 | 40 | 6 | 6 | 10 | 10 | 2 | 2 | 24 | 24 | 4 | 8 | 4 | 4 | 4 | 4 | 8 | 8 | 20 | 20 | 4 | 4 | 12 | 12 | 12 | 12 | 8 | ··· | 8 |
45 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | S3 | D4 | D4 | D5 | D6 | D6 | D6 | SD16 | D10 | D10 | D10 | S3×D4 | S3×D5 | D4×D5 | S3×SD16 | C2×S3×D5 | D5×SD16 | D10⋊D6 | D15⋊SD16 |
kernel | D15⋊SD16 | D15⋊2C8 | C6.D20 | D12.D5 | C3×Q8⋊D5 | C5×Q8⋊2S3 | C20⋊D6 | Q8×D15 | Q8⋊D5 | Dic15 | D30 | Q8⋊2S3 | C5⋊2C8 | D20 | C5×Q8 | D15 | C3⋊C8 | D12 | C3×Q8 | C10 | Q8 | C6 | C5 | C4 | C3 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 4 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 2 |
Matrix representation of D15⋊SD16 ►in GL6(𝔽241)
240 | 189 | 0 | 0 | 0 | 0 |
52 | 52 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 240 | 1 |
0 | 0 | 0 | 0 | 240 | 0 |
240 | 189 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 240 | 0 | 0 | 0 |
0 | 0 | 0 | 240 | 0 | 0 |
0 | 0 | 0 | 0 | 240 | 0 |
0 | 0 | 0 | 0 | 240 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 38 | 73 | 0 | 0 |
0 | 0 | 208 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 240 | 123 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 240 |
0 | 0 | 0 | 0 | 240 | 0 |
G:=sub<GL(6,GF(241))| [240,52,0,0,0,0,189,52,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,240,240,0,0,0,0,1,0],[240,0,0,0,0,0,189,1,0,0,0,0,0,0,240,0,0,0,0,0,0,240,0,0,0,0,0,0,240,240,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,38,208,0,0,0,0,73,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,240,0,0,0,0,0,123,1,0,0,0,0,0,0,0,240,0,0,0,0,240,0] >;
D15⋊SD16 in GAP, Magma, Sage, TeX
D_{15}\rtimes {\rm SD}_{16}
% in TeX
G:=Group("D15:SD16");
// GroupNames label
G:=SmallGroup(480,581);
// by ID
G=gap.SmallGroup(480,581);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,254,135,100,675,346,185,80,1356,18822]);
// Polycyclic
G:=Group<a,b,c,d|a^15=b^2=c^8=d^2=1,b*a*b=a^-1,c*a*c^-1=d*a*d=a^11,c*b*c^-1=d*b*d=a^10*b,d*c*d=c^3>;
// generators/relations