Extensions 1→N→G→Q→1 with N=C15⋊SD16 and Q=C2

Direct product G=N×Q with N=C15⋊SD16 and Q=C2
dρLabelID
C2×C15⋊SD16240C2xC15:SD16480,390

Semidirect products G=N:Q with N=C15⋊SD16 and Q=C2
extensionφ:Q→Out NdρLabelID
C15⋊SD161C2 = Dic103D6φ: C2/C1C2 ⊆ Out C15⋊SD161208+C15:SD16:1C2480,554
C15⋊SD162C2 = Dic10⋊D6φ: C2/C1C2 ⊆ Out C15⋊SD161208+C15:SD16:2C2480,563
C15⋊SD163C2 = C60.16C23φ: C2/C1C2 ⊆ Out C15⋊SD162408+C15:SD16:3C2480,568
C15⋊SD164C2 = D125D10φ: C2/C1C2 ⊆ Out C15⋊SD161208+C15:SD16:4C2480,576
C15⋊SD165C2 = D5×Q82S3φ: C2/C1C2 ⊆ Out C15⋊SD161208+C15:SD16:5C2480,577
C15⋊SD166C2 = C60.C23φ: C2/C1C2 ⊆ Out C15⋊SD162408+C15:SD16:6C2480,588
C15⋊SD167C2 = C60.39C23φ: C2/C1C2 ⊆ Out C15⋊SD162408+C15:SD16:7C2480,591
C15⋊SD168C2 = D12.D10φ: C2/C1C2 ⊆ Out C15⋊SD162408+C15:SD16:8C2480,599
C15⋊SD169C2 = S3×C40⋊C2φ: C2/C1C2 ⊆ Out C15⋊SD161204C15:SD16:9C2480,327
C15⋊SD1610C2 = C401D6φ: C2/C1C2 ⊆ Out C15⋊SD161204+C15:SD16:10C2480,329
C15⋊SD1611C2 = Dic20⋊S3φ: C2/C1C2 ⊆ Out C15⋊SD162404C15:SD16:11C2480,339
C15⋊SD1612C2 = D1205C2φ: C2/C1C2 ⊆ Out C15⋊SD162404+C15:SD16:12C2480,351
C15⋊SD1613C2 = D2019D6φ: C2/C1C2 ⊆ Out C15⋊SD161204+C15:SD16:13C2480,377
C15⋊SD1614C2 = C12.D20φ: C2/C1C2 ⊆ Out C15⋊SD162404C15:SD16:14C2480,391
C15⋊SD1615C2 = D20.31D6φ: trivial image2404C15:SD16:15C2480,387


׿
×
𝔽