Copied to
clipboard

G = C401D6order 480 = 25·3·5

1st semidirect product of C40 and D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C401D6, C247D10, D6.4D20, D12013C2, C1206C22, Dic108D6, D20.19D6, D6017C22, C60.93C23, Dic3.6D20, C3⋊C81D10, C83(S3×D5), (S3×D20)⋊9C2, C40⋊C21S3, C8⋊S31D5, C51(Q83D6), C10.3(S3×D4), C30.7(C2×D4), C6.3(C2×D20), C2.8(S3×D20), C3⋊D4010C2, C31(C8⋊D10), C153(C8⋊C22), (S3×C10).1D4, (C4×S3).1D10, D60⋊C28C2, (C5×Dic3).1D4, C15⋊SD1610C2, C12.66(C22×D5), (S3×C20).24C22, C20.143(C22×S3), (C3×D20).21C22, (C3×Dic10)⋊13C22, C4.92(C2×S3×D5), (C5×C8⋊S3)⋊1C2, (C3×C40⋊C2)⋊1C2, (C5×C3⋊C8)⋊15C22, SmallGroup(480,329)

Series: Derived Chief Lower central Upper central

C1C60 — C401D6
C1C5C15C30C60C3×D20S3×D20 — C401D6
C15C30C60 — C401D6
C1C2C4C8

Generators and relations for C401D6
 G = < a,b,c | a40=b6=c2=1, bab-1=a19, cac=a-1, cbc=b-1 >

Subgroups: 1068 in 136 conjugacy classes, 40 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, S3, C6, C6, C8, C8, C2×C4, D4, Q8, C23, D5, C10, C10, Dic3, C12, C12, D6, D6, C2×C6, C15, M4(2), D8, SD16, C2×D4, C4○D4, Dic5, C20, C20, D10, C2×C10, C3⋊C8, C24, C4×S3, C4×S3, D12, C3⋊D4, C3×D4, C3×Q8, C22×S3, C5×S3, C3×D5, D15, C30, C8⋊C22, C40, C40, Dic10, C4×D5, D20, D20, C5⋊D4, C2×C20, C22×D5, C8⋊S3, D24, D4⋊S3, Q82S3, C3×SD16, S3×D4, Q83S3, C5×Dic3, C3×Dic5, C60, S3×D5, C6×D5, S3×C10, D30, C40⋊C2, C40⋊C2, D40, C5×M4(2), C2×D20, C4○D20, Q83D6, C5×C3⋊C8, C120, D30.C2, C3⋊D20, C5⋊D12, C3×Dic10, C3×D20, S3×C20, D60, C2×S3×D5, C8⋊D10, C3⋊D40, C15⋊SD16, C3×C40⋊C2, C5×C8⋊S3, D120, D60⋊C2, S3×D20, C401D6
Quotients: C1, C2, C22, S3, D4, C23, D5, D6, C2×D4, D10, C22×S3, C8⋊C22, D20, C22×D5, S3×D4, S3×D5, C2×D20, Q83D6, C2×S3×D5, C8⋊D10, S3×D20, C401D6

Smallest permutation representation of C401D6
On 120 points
Generators in S120
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 82 67)(2 101 68 20 83 46)(3 120 69 39 84 65)(4 99 70 18 85 44)(5 118 71 37 86 63)(6 97 72 16 87 42)(7 116 73 35 88 61)(8 95 74 14 89 80)(9 114 75 33 90 59)(10 93 76 12 91 78)(11 112 77 31 92 57)(13 110 79 29 94 55)(15 108 41 27 96 53)(17 106 43 25 98 51)(19 104 45 23 100 49)(21 102 47)(22 81 48 40 103 66)(24 119 50 38 105 64)(26 117 52 36 107 62)(28 115 54 34 109 60)(30 113 56 32 111 58)
(1 67)(2 66)(3 65)(4 64)(5 63)(6 62)(7 61)(8 60)(9 59)(10 58)(11 57)(12 56)(13 55)(14 54)(15 53)(16 52)(17 51)(18 50)(19 49)(20 48)(21 47)(22 46)(23 45)(24 44)(25 43)(26 42)(27 41)(28 80)(29 79)(30 78)(31 77)(32 76)(33 75)(34 74)(35 73)(36 72)(37 71)(38 70)(39 69)(40 68)(81 83)(84 120)(85 119)(86 118)(87 117)(88 116)(89 115)(90 114)(91 113)(92 112)(93 111)(94 110)(95 109)(96 108)(97 107)(98 106)(99 105)(100 104)(101 103)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,82,67)(2,101,68,20,83,46)(3,120,69,39,84,65)(4,99,70,18,85,44)(5,118,71,37,86,63)(6,97,72,16,87,42)(7,116,73,35,88,61)(8,95,74,14,89,80)(9,114,75,33,90,59)(10,93,76,12,91,78)(11,112,77,31,92,57)(13,110,79,29,94,55)(15,108,41,27,96,53)(17,106,43,25,98,51)(19,104,45,23,100,49)(21,102,47)(22,81,48,40,103,66)(24,119,50,38,105,64)(26,117,52,36,107,62)(28,115,54,34,109,60)(30,113,56,32,111,58), (1,67)(2,66)(3,65)(4,64)(5,63)(6,62)(7,61)(8,60)(9,59)(10,58)(11,57)(12,56)(13,55)(14,54)(15,53)(16,52)(17,51)(18,50)(19,49)(20,48)(21,47)(22,46)(23,45)(24,44)(25,43)(26,42)(27,41)(28,80)(29,79)(30,78)(31,77)(32,76)(33,75)(34,74)(35,73)(36,72)(37,71)(38,70)(39,69)(40,68)(81,83)(84,120)(85,119)(86,118)(87,117)(88,116)(89,115)(90,114)(91,113)(92,112)(93,111)(94,110)(95,109)(96,108)(97,107)(98,106)(99,105)(100,104)(101,103)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,82,67)(2,101,68,20,83,46)(3,120,69,39,84,65)(4,99,70,18,85,44)(5,118,71,37,86,63)(6,97,72,16,87,42)(7,116,73,35,88,61)(8,95,74,14,89,80)(9,114,75,33,90,59)(10,93,76,12,91,78)(11,112,77,31,92,57)(13,110,79,29,94,55)(15,108,41,27,96,53)(17,106,43,25,98,51)(19,104,45,23,100,49)(21,102,47)(22,81,48,40,103,66)(24,119,50,38,105,64)(26,117,52,36,107,62)(28,115,54,34,109,60)(30,113,56,32,111,58), (1,67)(2,66)(3,65)(4,64)(5,63)(6,62)(7,61)(8,60)(9,59)(10,58)(11,57)(12,56)(13,55)(14,54)(15,53)(16,52)(17,51)(18,50)(19,49)(20,48)(21,47)(22,46)(23,45)(24,44)(25,43)(26,42)(27,41)(28,80)(29,79)(30,78)(31,77)(32,76)(33,75)(34,74)(35,73)(36,72)(37,71)(38,70)(39,69)(40,68)(81,83)(84,120)(85,119)(86,118)(87,117)(88,116)(89,115)(90,114)(91,113)(92,112)(93,111)(94,110)(95,109)(96,108)(97,107)(98,106)(99,105)(100,104)(101,103) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,82,67),(2,101,68,20,83,46),(3,120,69,39,84,65),(4,99,70,18,85,44),(5,118,71,37,86,63),(6,97,72,16,87,42),(7,116,73,35,88,61),(8,95,74,14,89,80),(9,114,75,33,90,59),(10,93,76,12,91,78),(11,112,77,31,92,57),(13,110,79,29,94,55),(15,108,41,27,96,53),(17,106,43,25,98,51),(19,104,45,23,100,49),(21,102,47),(22,81,48,40,103,66),(24,119,50,38,105,64),(26,117,52,36,107,62),(28,115,54,34,109,60),(30,113,56,32,111,58)], [(1,67),(2,66),(3,65),(4,64),(5,63),(6,62),(7,61),(8,60),(9,59),(10,58),(11,57),(12,56),(13,55),(14,54),(15,53),(16,52),(17,51),(18,50),(19,49),(20,48),(21,47),(22,46),(23,45),(24,44),(25,43),(26,42),(27,41),(28,80),(29,79),(30,78),(31,77),(32,76),(33,75),(34,74),(35,73),(36,72),(37,71),(38,70),(39,69),(40,68),(81,83),(84,120),(85,119),(86,118),(87,117),(88,116),(89,115),(90,114),(91,113),(92,112),(93,111),(94,110),(95,109),(96,108),(97,107),(98,106),(99,105),(100,104),(101,103)]])

54 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C5A5B6A6B8A8B10A10B10C10D12A12B15A15B20A20B20C20D20E20F24A24B30A30B40A40B40C40D40E40F40G40H60A60B60C60D120A···120H
order1222223444556688101010101212151520202020202024243030404040404040404060606060120···120
size11620606022620222404122212124404422221212444444441212121244444···4

54 irreducible representations

dim1111111122222222222244444444
type++++++++++++++++++++++++++++
imageC1C2C2C2C2C2C2C2S3D4D4D5D6D6D6D10D10D10D20D20C8⋊C22S3×D4S3×D5Q83D6C2×S3×D5C8⋊D10S3×D20C401D6
kernelC401D6C3⋊D40C15⋊SD16C3×C40⋊C2C5×C8⋊S3D120D60⋊C2S3×D20C40⋊C2C5×Dic3S3×C10C8⋊S3C40Dic10D20C3⋊C8C24C4×S3Dic3D6C15C10C8C5C4C3C2C1
# reps1111111111121112224411222448

Matrix representation of C401D6 in GL8(𝔽241)

152000000
189189000000
001520000
001891890000
000002730
0000108003
0000721600214
00001611531330
,
240024000000
5215210000
10000000
189240000000
00001000
000024024000
00001780240239
00000001
,
240024000000
5215210000
00100000
001892400000
00001000
000024024000
0000811812
000016900240

G:=sub<GL(8,GF(241))| [1,189,0,0,0,0,0,0,52,189,0,0,0,0,0,0,0,0,1,189,0,0,0,0,0,0,52,189,0,0,0,0,0,0,0,0,0,108,72,161,0,0,0,0,27,0,160,153,0,0,0,0,3,0,0,133,0,0,0,0,0,3,214,0],[240,52,1,189,0,0,0,0,0,1,0,240,0,0,0,0,240,52,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,240,178,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,239,1],[240,52,0,0,0,0,0,0,0,1,0,0,0,0,0,0,240,52,1,189,0,0,0,0,0,1,0,240,0,0,0,0,0,0,0,0,1,240,81,169,0,0,0,0,0,240,18,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,2,240] >;

C401D6 in GAP, Magma, Sage, TeX

C_{40}\rtimes_1D_6
% in TeX

G:=Group("C40:1D6");
// GroupNames label

G:=SmallGroup(480,329);
// by ID

G=gap.SmallGroup(480,329);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,254,219,58,675,80,1356,18822]);
// Polycyclic

G:=Group<a,b,c|a^40=b^6=c^2=1,b*a*b^-1=a^19,c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽