Copied to
clipboard

G = D5×Q82S3order 480 = 25·3·5

Direct product of D5 and Q82S3

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D5×Q82S3, Dic106D6, D12.25D10, C60.25C23, D60.8C22, C3⋊C817D10, (Q8×D5)⋊4S3, (C5×Q8)⋊4D6, Q84(S3×D5), C37(D5×SD16), (C3×Q8)⋊7D10, (C3×D5)⋊3SD16, (D5×D12).1C2, (C6×D5).64D4, (C4×D5).47D6, C6.146(D4×D5), C1513(C2×SD16), Q82D151C2, C20.D65C2, C15⋊SD165C2, C30.187(C2×D4), (Q8×C15)⋊1C22, C153C811C22, C20.25(C22×S3), (C3×Dic5).15D4, (C5×D12).8C22, (D5×C12).9C22, C12.25(C22×D5), D10.40(C3⋊D4), (C3×Dic10)⋊6C22, Dic5.13(C3⋊D4), (D5×C3⋊C8)⋊5C2, (C3×Q8×D5)⋊1C2, C4.25(C2×S3×D5), C52(C2×Q82S3), (C5×C3⋊C8)⋊11C22, C2.28(D5×C3⋊D4), (C5×Q82S3)⋊1C2, C10.49(C2×C3⋊D4), SmallGroup(480,577)

Series: Derived Chief Lower central Upper central

C1C60 — D5×Q82S3
C1C5C15C30C60D5×C12D5×D12 — D5×Q82S3
C15C30C60 — D5×Q82S3
C1C2C4Q8

Generators and relations for D5×Q82S3
 G = < a,b,c,d,e,f | a5=b2=c4=e3=f2=1, d2=c2, bab=a-1, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, dcd-1=fcf=c-1, ce=ec, de=ed, fdf=c-1d, fef=e-1 >

Subgroups: 876 in 136 conjugacy classes, 44 normal (40 characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, S3, C6, C6, C8, C2×C4, D4, Q8, Q8, C23, D5, D5, C10, C10, C12, C12, D6, C2×C6, C15, C2×C8, SD16, C2×D4, C2×Q8, Dic5, Dic5, C20, C20, D10, D10, C2×C10, C3⋊C8, C3⋊C8, D12, D12, C2×C12, C3×Q8, C3×Q8, C22×S3, C5×S3, C3×D5, D15, C30, C2×SD16, C52C8, C40, Dic10, Dic10, C4×D5, C4×D5, D20, C5⋊D4, C5×D4, C5×Q8, C22×D5, C2×C3⋊C8, Q82S3, Q82S3, C2×D12, C6×Q8, C3×Dic5, C3×Dic5, C60, C60, S3×D5, C6×D5, S3×C10, D30, C8×D5, C40⋊C2, D4.D5, Q8⋊D5, C5×SD16, D4×D5, Q8×D5, C2×Q82S3, C5×C3⋊C8, C153C8, C5⋊D12, C3×Dic10, C3×Dic10, D5×C12, D5×C12, C5×D12, D60, Q8×C15, C2×S3×D5, D5×SD16, D5×C3⋊C8, C20.D6, C15⋊SD16, C5×Q82S3, Q82D15, D5×D12, C3×Q8×D5, D5×Q82S3
Quotients: C1, C2, C22, S3, D4, C23, D5, D6, SD16, C2×D4, D10, C3⋊D4, C22×S3, C2×SD16, C22×D5, Q82S3, C2×C3⋊D4, S3×D5, D4×D5, C2×Q82S3, C2×S3×D5, D5×SD16, D5×C3⋊D4, D5×Q82S3

Smallest permutation representation of D5×Q82S3
On 120 points
Generators in S120
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)
(1 5)(2 4)(7 10)(8 9)(12 15)(13 14)(17 20)(18 19)(22 25)(23 24)(27 30)(28 29)(32 35)(33 34)(37 40)(38 39)(42 45)(43 44)(47 50)(48 49)(52 55)(53 54)(57 60)(58 59)(62 65)(63 64)(67 70)(68 69)(72 75)(73 74)(77 80)(78 79)(82 85)(83 84)(87 90)(88 89)(92 95)(93 94)(97 100)(98 99)(102 105)(103 104)(107 110)(108 109)(112 115)(113 114)(117 120)(118 119)
(1 49 19 34)(2 50 20 35)(3 46 16 31)(4 47 17 32)(5 48 18 33)(6 51 21 36)(7 52 22 37)(8 53 23 38)(9 54 24 39)(10 55 25 40)(11 56 26 41)(12 57 27 42)(13 58 28 43)(14 59 29 44)(15 60 30 45)(61 91 76 106)(62 92 77 107)(63 93 78 108)(64 94 79 109)(65 95 80 110)(66 96 81 111)(67 97 82 112)(68 98 83 113)(69 99 84 114)(70 100 85 115)(71 101 86 116)(72 102 87 117)(73 103 88 118)(74 104 89 119)(75 105 90 120)
(1 79 19 64)(2 80 20 65)(3 76 16 61)(4 77 17 62)(5 78 18 63)(6 81 21 66)(7 82 22 67)(8 83 23 68)(9 84 24 69)(10 85 25 70)(11 86 26 71)(12 87 27 72)(13 88 28 73)(14 89 29 74)(15 90 30 75)(31 106 46 91)(32 107 47 92)(33 108 48 93)(34 109 49 94)(35 110 50 95)(36 111 51 96)(37 112 52 97)(38 113 53 98)(39 114 54 99)(40 115 55 100)(41 116 56 101)(42 117 57 102)(43 118 58 103)(44 119 59 104)(45 120 60 105)
(1 14 9)(2 15 10)(3 11 6)(4 12 7)(5 13 8)(16 26 21)(17 27 22)(18 28 23)(19 29 24)(20 30 25)(31 41 36)(32 42 37)(33 43 38)(34 44 39)(35 45 40)(46 56 51)(47 57 52)(48 58 53)(49 59 54)(50 60 55)(61 71 66)(62 72 67)(63 73 68)(64 74 69)(65 75 70)(76 86 81)(77 87 82)(78 88 83)(79 89 84)(80 90 85)(91 101 96)(92 102 97)(93 103 98)(94 104 99)(95 105 100)(106 116 111)(107 117 112)(108 118 113)(109 119 114)(110 120 115)
(6 11)(7 12)(8 13)(9 14)(10 15)(21 26)(22 27)(23 28)(24 29)(25 30)(31 46)(32 47)(33 48)(34 49)(35 50)(36 56)(37 57)(38 58)(39 59)(40 60)(41 51)(42 52)(43 53)(44 54)(45 55)(61 91)(62 92)(63 93)(64 94)(65 95)(66 101)(67 102)(68 103)(69 104)(70 105)(71 96)(72 97)(73 98)(74 99)(75 100)(76 106)(77 107)(78 108)(79 109)(80 110)(81 116)(82 117)(83 118)(84 119)(85 120)(86 111)(87 112)(88 113)(89 114)(90 115)

G:=sub<Sym(120)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120), (1,5)(2,4)(7,10)(8,9)(12,15)(13,14)(17,20)(18,19)(22,25)(23,24)(27,30)(28,29)(32,35)(33,34)(37,40)(38,39)(42,45)(43,44)(47,50)(48,49)(52,55)(53,54)(57,60)(58,59)(62,65)(63,64)(67,70)(68,69)(72,75)(73,74)(77,80)(78,79)(82,85)(83,84)(87,90)(88,89)(92,95)(93,94)(97,100)(98,99)(102,105)(103,104)(107,110)(108,109)(112,115)(113,114)(117,120)(118,119), (1,49,19,34)(2,50,20,35)(3,46,16,31)(4,47,17,32)(5,48,18,33)(6,51,21,36)(7,52,22,37)(8,53,23,38)(9,54,24,39)(10,55,25,40)(11,56,26,41)(12,57,27,42)(13,58,28,43)(14,59,29,44)(15,60,30,45)(61,91,76,106)(62,92,77,107)(63,93,78,108)(64,94,79,109)(65,95,80,110)(66,96,81,111)(67,97,82,112)(68,98,83,113)(69,99,84,114)(70,100,85,115)(71,101,86,116)(72,102,87,117)(73,103,88,118)(74,104,89,119)(75,105,90,120), (1,79,19,64)(2,80,20,65)(3,76,16,61)(4,77,17,62)(5,78,18,63)(6,81,21,66)(7,82,22,67)(8,83,23,68)(9,84,24,69)(10,85,25,70)(11,86,26,71)(12,87,27,72)(13,88,28,73)(14,89,29,74)(15,90,30,75)(31,106,46,91)(32,107,47,92)(33,108,48,93)(34,109,49,94)(35,110,50,95)(36,111,51,96)(37,112,52,97)(38,113,53,98)(39,114,54,99)(40,115,55,100)(41,116,56,101)(42,117,57,102)(43,118,58,103)(44,119,59,104)(45,120,60,105), (1,14,9)(2,15,10)(3,11,6)(4,12,7)(5,13,8)(16,26,21)(17,27,22)(18,28,23)(19,29,24)(20,30,25)(31,41,36)(32,42,37)(33,43,38)(34,44,39)(35,45,40)(46,56,51)(47,57,52)(48,58,53)(49,59,54)(50,60,55)(61,71,66)(62,72,67)(63,73,68)(64,74,69)(65,75,70)(76,86,81)(77,87,82)(78,88,83)(79,89,84)(80,90,85)(91,101,96)(92,102,97)(93,103,98)(94,104,99)(95,105,100)(106,116,111)(107,117,112)(108,118,113)(109,119,114)(110,120,115), (6,11)(7,12)(8,13)(9,14)(10,15)(21,26)(22,27)(23,28)(24,29)(25,30)(31,46)(32,47)(33,48)(34,49)(35,50)(36,56)(37,57)(38,58)(39,59)(40,60)(41,51)(42,52)(43,53)(44,54)(45,55)(61,91)(62,92)(63,93)(64,94)(65,95)(66,101)(67,102)(68,103)(69,104)(70,105)(71,96)(72,97)(73,98)(74,99)(75,100)(76,106)(77,107)(78,108)(79,109)(80,110)(81,116)(82,117)(83,118)(84,119)(85,120)(86,111)(87,112)(88,113)(89,114)(90,115)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120), (1,5)(2,4)(7,10)(8,9)(12,15)(13,14)(17,20)(18,19)(22,25)(23,24)(27,30)(28,29)(32,35)(33,34)(37,40)(38,39)(42,45)(43,44)(47,50)(48,49)(52,55)(53,54)(57,60)(58,59)(62,65)(63,64)(67,70)(68,69)(72,75)(73,74)(77,80)(78,79)(82,85)(83,84)(87,90)(88,89)(92,95)(93,94)(97,100)(98,99)(102,105)(103,104)(107,110)(108,109)(112,115)(113,114)(117,120)(118,119), (1,49,19,34)(2,50,20,35)(3,46,16,31)(4,47,17,32)(5,48,18,33)(6,51,21,36)(7,52,22,37)(8,53,23,38)(9,54,24,39)(10,55,25,40)(11,56,26,41)(12,57,27,42)(13,58,28,43)(14,59,29,44)(15,60,30,45)(61,91,76,106)(62,92,77,107)(63,93,78,108)(64,94,79,109)(65,95,80,110)(66,96,81,111)(67,97,82,112)(68,98,83,113)(69,99,84,114)(70,100,85,115)(71,101,86,116)(72,102,87,117)(73,103,88,118)(74,104,89,119)(75,105,90,120), (1,79,19,64)(2,80,20,65)(3,76,16,61)(4,77,17,62)(5,78,18,63)(6,81,21,66)(7,82,22,67)(8,83,23,68)(9,84,24,69)(10,85,25,70)(11,86,26,71)(12,87,27,72)(13,88,28,73)(14,89,29,74)(15,90,30,75)(31,106,46,91)(32,107,47,92)(33,108,48,93)(34,109,49,94)(35,110,50,95)(36,111,51,96)(37,112,52,97)(38,113,53,98)(39,114,54,99)(40,115,55,100)(41,116,56,101)(42,117,57,102)(43,118,58,103)(44,119,59,104)(45,120,60,105), (1,14,9)(2,15,10)(3,11,6)(4,12,7)(5,13,8)(16,26,21)(17,27,22)(18,28,23)(19,29,24)(20,30,25)(31,41,36)(32,42,37)(33,43,38)(34,44,39)(35,45,40)(46,56,51)(47,57,52)(48,58,53)(49,59,54)(50,60,55)(61,71,66)(62,72,67)(63,73,68)(64,74,69)(65,75,70)(76,86,81)(77,87,82)(78,88,83)(79,89,84)(80,90,85)(91,101,96)(92,102,97)(93,103,98)(94,104,99)(95,105,100)(106,116,111)(107,117,112)(108,118,113)(109,119,114)(110,120,115), (6,11)(7,12)(8,13)(9,14)(10,15)(21,26)(22,27)(23,28)(24,29)(25,30)(31,46)(32,47)(33,48)(34,49)(35,50)(36,56)(37,57)(38,58)(39,59)(40,60)(41,51)(42,52)(43,53)(44,54)(45,55)(61,91)(62,92)(63,93)(64,94)(65,95)(66,101)(67,102)(68,103)(69,104)(70,105)(71,96)(72,97)(73,98)(74,99)(75,100)(76,106)(77,107)(78,108)(79,109)(80,110)(81,116)(82,117)(83,118)(84,119)(85,120)(86,111)(87,112)(88,113)(89,114)(90,115) );

G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120)], [(1,5),(2,4),(7,10),(8,9),(12,15),(13,14),(17,20),(18,19),(22,25),(23,24),(27,30),(28,29),(32,35),(33,34),(37,40),(38,39),(42,45),(43,44),(47,50),(48,49),(52,55),(53,54),(57,60),(58,59),(62,65),(63,64),(67,70),(68,69),(72,75),(73,74),(77,80),(78,79),(82,85),(83,84),(87,90),(88,89),(92,95),(93,94),(97,100),(98,99),(102,105),(103,104),(107,110),(108,109),(112,115),(113,114),(117,120),(118,119)], [(1,49,19,34),(2,50,20,35),(3,46,16,31),(4,47,17,32),(5,48,18,33),(6,51,21,36),(7,52,22,37),(8,53,23,38),(9,54,24,39),(10,55,25,40),(11,56,26,41),(12,57,27,42),(13,58,28,43),(14,59,29,44),(15,60,30,45),(61,91,76,106),(62,92,77,107),(63,93,78,108),(64,94,79,109),(65,95,80,110),(66,96,81,111),(67,97,82,112),(68,98,83,113),(69,99,84,114),(70,100,85,115),(71,101,86,116),(72,102,87,117),(73,103,88,118),(74,104,89,119),(75,105,90,120)], [(1,79,19,64),(2,80,20,65),(3,76,16,61),(4,77,17,62),(5,78,18,63),(6,81,21,66),(7,82,22,67),(8,83,23,68),(9,84,24,69),(10,85,25,70),(11,86,26,71),(12,87,27,72),(13,88,28,73),(14,89,29,74),(15,90,30,75),(31,106,46,91),(32,107,47,92),(33,108,48,93),(34,109,49,94),(35,110,50,95),(36,111,51,96),(37,112,52,97),(38,113,53,98),(39,114,54,99),(40,115,55,100),(41,116,56,101),(42,117,57,102),(43,118,58,103),(44,119,59,104),(45,120,60,105)], [(1,14,9),(2,15,10),(3,11,6),(4,12,7),(5,13,8),(16,26,21),(17,27,22),(18,28,23),(19,29,24),(20,30,25),(31,41,36),(32,42,37),(33,43,38),(34,44,39),(35,45,40),(46,56,51),(47,57,52),(48,58,53),(49,59,54),(50,60,55),(61,71,66),(62,72,67),(63,73,68),(64,74,69),(65,75,70),(76,86,81),(77,87,82),(78,88,83),(79,89,84),(80,90,85),(91,101,96),(92,102,97),(93,103,98),(94,104,99),(95,105,100),(106,116,111),(107,117,112),(108,118,113),(109,119,114),(110,120,115)], [(6,11),(7,12),(8,13),(9,14),(10,15),(21,26),(22,27),(23,28),(24,29),(25,30),(31,46),(32,47),(33,48),(34,49),(35,50),(36,56),(37,57),(38,58),(39,59),(40,60),(41,51),(42,52),(43,53),(44,54),(45,55),(61,91),(62,92),(63,93),(64,94),(65,95),(66,101),(67,102),(68,103),(69,104),(70,105),(71,96),(72,97),(73,98),(74,99),(75,100),(76,106),(77,107),(78,108),(79,109),(80,110),(81,116),(82,117),(83,118),(84,119),(85,120),(86,111),(87,112),(88,113),(89,114),(90,115)]])

48 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D5A5B6A6B6C8A8B8C8D10A10B10C10D12A12B12C12D12E12F15A15B20A20B20C20D30A30B40A40B40C40D60A···60F
order122222344445566688881010101012121212121215152020202030304040404060···60
size115512602241020222101066303022242444420202044448844121212128···8

48 irreducible representations

dim1111111122222222222224444448
type+++++++++++++++++++++++
imageC1C2C2C2C2C2C2C2S3D4D4D5D6D6D6SD16D10D10D10C3⋊D4C3⋊D4Q82S3S3×D5D4×D5C2×S3×D5D5×SD16D5×C3⋊D4D5×Q82S3
kernelD5×Q82S3D5×C3⋊C8C20.D6C15⋊SD16C5×Q82S3Q82D15D5×D12C3×Q8×D5Q8×D5C3×Dic5C6×D5Q82S3Dic10C4×D5C5×Q8C3×D5C3⋊C8D12C3×Q8Dic5D10D5Q8C6C4C3C2C1
# reps1111111111121114222222222442

Matrix representation of D5×Q82S3 in GL6(𝔽241)

100000
010000
00189100
00240000
000010
000001
,
100000
010000
00118900
00024000
00002400
00000240
,
100000
010000
001000
000100
00001035
000047138
,
100000
010000
001000
000100
0000193146
00007548
,
24010000
24000000
001000
000100
000010
000001
,
010000
100000
00240000
00024000
000010
00007240

G:=sub<GL(6,GF(241))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,189,240,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,189,240,0,0,0,0,0,0,240,0,0,0,0,0,0,240],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,103,47,0,0,0,0,5,138],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,193,75,0,0,0,0,146,48],[240,240,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,240,0,0,0,0,0,0,240,0,0,0,0,0,0,1,7,0,0,0,0,0,240] >;

D5×Q82S3 in GAP, Magma, Sage, TeX

D_5\times Q_8\rtimes_2S_3
% in TeX

G:=Group("D5xQ8:2S3");
// GroupNames label

G:=SmallGroup(480,577);
// by ID

G=gap.SmallGroup(480,577);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,135,100,346,185,80,1356,18822]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^5=b^2=c^4=e^3=f^2=1,d^2=c^2,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,d*c*d^-1=f*c*f=c^-1,c*e=e*c,d*e=e*d,f*d*f=c^-1*d,f*e*f=e^-1>;
// generators/relations

׿
×
𝔽