Extensions 1→N→G→Q→1 with N=C4xC20 and Q=S3

Direct product G=NxQ with N=C4xC20 and Q=S3
dρLabelID
S3xC4xC20240S3xC4xC20480,750

Semidirect products G=N:Q with N=C4xC20 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C4xC20):1S3 = C42:D15φ: S3/C1S3 ⊆ Aut C4xC20606+(C4xC20):1S3480,258
(C4xC20):2S3 = C5xC42:S3φ: S3/C1S3 ⊆ Aut C4xC20603(C4xC20):2S3480,254
(C4xC20):3S3 = C5xC42:2S3φ: S3/C3C2 ⊆ Aut C4xC20240(C4xC20):3S3480,751
(C4xC20):4S3 = C5xC42:3S3φ: S3/C3C2 ⊆ Aut C4xC20240(C4xC20):4S3480,755
(C4xC20):5S3 = C42:3D15φ: S3/C3C2 ⊆ Aut C4xC20240(C4xC20):5S3480,841
(C4xC20):6S3 = C42:6D15φ: S3/C3C2 ⊆ Aut C4xC20240(C4xC20):6S3480,839
(C4xC20):7S3 = C42:7D15φ: S3/C3C2 ⊆ Aut C4xC20240(C4xC20):7S3480,840
(C4xC20):8S3 = D60:7C4φ: S3/C3C2 ⊆ Aut C4xC201202(C4xC20):8S3480,165
(C4xC20):9S3 = C4xD60φ: S3/C3C2 ⊆ Aut C4xC20240(C4xC20):9S3480,838
(C4xC20):10S3 = C42xD15φ: S3/C3C2 ⊆ Aut C4xC20240(C4xC20):10S3480,836
(C4xC20):11S3 = C42:2D15φ: S3/C3C2 ⊆ Aut C4xC20240(C4xC20):11S3480,837
(C4xC20):12S3 = C5xC42:4S3φ: S3/C3C2 ⊆ Aut C4xC201202(C4xC20):12S3480,124
(C4xC20):13S3 = C20xD12φ: S3/C3C2 ⊆ Aut C4xC20240(C4xC20):13S3480,752
(C4xC20):14S3 = C5xC4:D12φ: S3/C3C2 ⊆ Aut C4xC20240(C4xC20):14S3480,753
(C4xC20):15S3 = C5xC42:7S3φ: S3/C3C2 ⊆ Aut C4xC20240(C4xC20):15S3480,754

Non-split extensions G=N.Q with N=C4xC20 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C4xC20).1S3 = C5xC42.S3φ: S3/C3C2 ⊆ Aut C4xC20480(C4xC20).1S3480,122
(C4xC20).2S3 = C60:8Q8φ: S3/C3C2 ⊆ Aut C4xC20480(C4xC20).2S3480,834
(C4xC20).3S3 = C60.24Q8φ: S3/C3C2 ⊆ Aut C4xC20480(C4xC20).3S3480,835
(C4xC20).4S3 = C60:5C8φ: S3/C3C2 ⊆ Aut C4xC20480(C4xC20).4S3480,164
(C4xC20).5S3 = C4xDic30φ: S3/C3C2 ⊆ Aut C4xC20480(C4xC20).5S3480,833
(C4xC20).6S3 = C4xC15:3C8φ: S3/C3C2 ⊆ Aut C4xC20480(C4xC20).6S3480,162
(C4xC20).7S3 = C42.D15φ: S3/C3C2 ⊆ Aut C4xC20480(C4xC20).7S3480,163
(C4xC20).8S3 = C5xC12:C8φ: S3/C3C2 ⊆ Aut C4xC20480(C4xC20).8S3480,123
(C4xC20).9S3 = C20xDic6φ: S3/C3C2 ⊆ Aut C4xC20480(C4xC20).9S3480,747
(C4xC20).10S3 = C5xC12:2Q8φ: S3/C3C2 ⊆ Aut C4xC20480(C4xC20).10S3480,748
(C4xC20).11S3 = C5xC12.6Q8φ: S3/C3C2 ⊆ Aut C4xC20480(C4xC20).11S3480,749
(C4xC20).12S3 = C20xC3:C8central extension (φ=1)480(C4xC20).12S3480,121

׿
x
:
Z
F
o
wr
Q
<