Extensions 1→N→G→Q→1 with N=C4×C20 and Q=S3

Direct product G=N×Q with N=C4×C20 and Q=S3
dρLabelID
S3×C4×C20240S3xC4xC20480,750

Semidirect products G=N:Q with N=C4×C20 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C4×C20)⋊1S3 = C42⋊D15φ: S3/C1S3 ⊆ Aut C4×C20606+(C4xC20):1S3480,258
(C4×C20)⋊2S3 = C5×C42⋊S3φ: S3/C1S3 ⊆ Aut C4×C20603(C4xC20):2S3480,254
(C4×C20)⋊3S3 = C5×C422S3φ: S3/C3C2 ⊆ Aut C4×C20240(C4xC20):3S3480,751
(C4×C20)⋊4S3 = C5×C423S3φ: S3/C3C2 ⊆ Aut C4×C20240(C4xC20):4S3480,755
(C4×C20)⋊5S3 = C423D15φ: S3/C3C2 ⊆ Aut C4×C20240(C4xC20):5S3480,841
(C4×C20)⋊6S3 = C426D15φ: S3/C3C2 ⊆ Aut C4×C20240(C4xC20):6S3480,839
(C4×C20)⋊7S3 = C427D15φ: S3/C3C2 ⊆ Aut C4×C20240(C4xC20):7S3480,840
(C4×C20)⋊8S3 = D607C4φ: S3/C3C2 ⊆ Aut C4×C201202(C4xC20):8S3480,165
(C4×C20)⋊9S3 = C4×D60φ: S3/C3C2 ⊆ Aut C4×C20240(C4xC20):9S3480,838
(C4×C20)⋊10S3 = C42×D15φ: S3/C3C2 ⊆ Aut C4×C20240(C4xC20):10S3480,836
(C4×C20)⋊11S3 = C422D15φ: S3/C3C2 ⊆ Aut C4×C20240(C4xC20):11S3480,837
(C4×C20)⋊12S3 = C5×C424S3φ: S3/C3C2 ⊆ Aut C4×C201202(C4xC20):12S3480,124
(C4×C20)⋊13S3 = C20×D12φ: S3/C3C2 ⊆ Aut C4×C20240(C4xC20):13S3480,752
(C4×C20)⋊14S3 = C5×C4⋊D12φ: S3/C3C2 ⊆ Aut C4×C20240(C4xC20):14S3480,753
(C4×C20)⋊15S3 = C5×C427S3φ: S3/C3C2 ⊆ Aut C4×C20240(C4xC20):15S3480,754

Non-split extensions G=N.Q with N=C4×C20 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C4×C20).1S3 = C5×C42.S3φ: S3/C3C2 ⊆ Aut C4×C20480(C4xC20).1S3480,122
(C4×C20).2S3 = C608Q8φ: S3/C3C2 ⊆ Aut C4×C20480(C4xC20).2S3480,834
(C4×C20).3S3 = C60.24Q8φ: S3/C3C2 ⊆ Aut C4×C20480(C4xC20).3S3480,835
(C4×C20).4S3 = C605C8φ: S3/C3C2 ⊆ Aut C4×C20480(C4xC20).4S3480,164
(C4×C20).5S3 = C4×Dic30φ: S3/C3C2 ⊆ Aut C4×C20480(C4xC20).5S3480,833
(C4×C20).6S3 = C4×C153C8φ: S3/C3C2 ⊆ Aut C4×C20480(C4xC20).6S3480,162
(C4×C20).7S3 = C42.D15φ: S3/C3C2 ⊆ Aut C4×C20480(C4xC20).7S3480,163
(C4×C20).8S3 = C5×C12⋊C8φ: S3/C3C2 ⊆ Aut C4×C20480(C4xC20).8S3480,123
(C4×C20).9S3 = C20×Dic6φ: S3/C3C2 ⊆ Aut C4×C20480(C4xC20).9S3480,747
(C4×C20).10S3 = C5×C122Q8φ: S3/C3C2 ⊆ Aut C4×C20480(C4xC20).10S3480,748
(C4×C20).11S3 = C5×C12.6Q8φ: S3/C3C2 ⊆ Aut C4×C20480(C4xC20).11S3480,749
(C4×C20).12S3 = C20×C3⋊C8central extension (φ=1)480(C4xC20).12S3480,121

׿
×
𝔽