direct product, abelian, monomial, 2-elementary
Aliases: C4×C20, SmallGroup(80,20)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C4×C20 |
C1 — C4×C20 |
C1 — C4×C20 |
Generators and relations for C4×C20
G = < a,b | a4=b20=1, ab=ba >
(1 80 46 32)(2 61 47 33)(3 62 48 34)(4 63 49 35)(5 64 50 36)(6 65 51 37)(7 66 52 38)(8 67 53 39)(9 68 54 40)(10 69 55 21)(11 70 56 22)(12 71 57 23)(13 72 58 24)(14 73 59 25)(15 74 60 26)(16 75 41 27)(17 76 42 28)(18 77 43 29)(19 78 44 30)(20 79 45 31)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
G:=sub<Sym(80)| (1,80,46,32)(2,61,47,33)(3,62,48,34)(4,63,49,35)(5,64,50,36)(6,65,51,37)(7,66,52,38)(8,67,53,39)(9,68,54,40)(10,69,55,21)(11,70,56,22)(12,71,57,23)(13,72,58,24)(14,73,59,25)(15,74,60,26)(16,75,41,27)(17,76,42,28)(18,77,43,29)(19,78,44,30)(20,79,45,31), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)>;
G:=Group( (1,80,46,32)(2,61,47,33)(3,62,48,34)(4,63,49,35)(5,64,50,36)(6,65,51,37)(7,66,52,38)(8,67,53,39)(9,68,54,40)(10,69,55,21)(11,70,56,22)(12,71,57,23)(13,72,58,24)(14,73,59,25)(15,74,60,26)(16,75,41,27)(17,76,42,28)(18,77,43,29)(19,78,44,30)(20,79,45,31), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80) );
G=PermutationGroup([[(1,80,46,32),(2,61,47,33),(3,62,48,34),(4,63,49,35),(5,64,50,36),(6,65,51,37),(7,66,52,38),(8,67,53,39),(9,68,54,40),(10,69,55,21),(11,70,56,22),(12,71,57,23),(13,72,58,24),(14,73,59,25),(15,74,60,26),(16,75,41,27),(17,76,42,28),(18,77,43,29),(19,78,44,30),(20,79,45,31)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)]])
C4×C20 is a maximal subgroup of
C42.D5 C20⋊3C8 D20⋊4C4 C20⋊2Q8 C20.6Q8 C42⋊D5 C20⋊4D4 C4.D20 C42⋊2D5
80 conjugacy classes
class | 1 | 2A | 2B | 2C | 4A | ··· | 4L | 5A | 5B | 5C | 5D | 10A | ··· | 10L | 20A | ··· | 20AV |
order | 1 | 2 | 2 | 2 | 4 | ··· | 4 | 5 | 5 | 5 | 5 | 10 | ··· | 10 | 20 | ··· | 20 |
size | 1 | 1 | 1 | 1 | 1 | ··· | 1 | 1 | 1 | 1 | 1 | 1 | ··· | 1 | 1 | ··· | 1 |
80 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 |
type | + | + | ||||
image | C1 | C2 | C4 | C5 | C10 | C20 |
kernel | C4×C20 | C2×C20 | C20 | C42 | C2×C4 | C4 |
# reps | 1 | 3 | 12 | 4 | 12 | 48 |
Matrix representation of C4×C20 ►in GL2(𝔽41) generated by
40 | 0 |
0 | 32 |
8 | 0 |
0 | 16 |
G:=sub<GL(2,GF(41))| [40,0,0,32],[8,0,0,16] >;
C4×C20 in GAP, Magma, Sage, TeX
C_4\times C_{20}
% in TeX
G:=Group("C4xC20");
// GroupNames label
G:=SmallGroup(80,20);
// by ID
G=gap.SmallGroup(80,20);
# by ID
G:=PCGroup([5,-2,-2,-5,-2,-2,100,206]);
// Polycyclic
G:=Group<a,b|a^4=b^20=1,a*b=b*a>;
// generators/relations
Export