Extensions 1→N→G→Q→1 with N=C5×Q16 and Q=S3

Direct product G=N×Q with N=C5×Q16 and Q=S3
dρLabelID
C5×S3×Q162404C5xS3xQ16480,796

Semidirect products G=N:Q with N=C5×Q16 and Q=S3
extensionφ:Q→Out NdρLabelID
(C5×Q16)⋊1S3 = C8.6D30φ: S3/C3C2 ⊆ Out C5×Q162404+(C5xQ16):1S3480,188
(C5×Q16)⋊2S3 = Q16×D15φ: S3/C3C2 ⊆ Out C5×Q162404-(C5xQ16):2S3480,882
(C5×Q16)⋊3S3 = D1208C2φ: S3/C3C2 ⊆ Out C5×Q162404+(C5xQ16):3S3480,884
(C5×Q16)⋊4S3 = Q16⋊D15φ: S3/C3C2 ⊆ Out C5×Q162404(C5xQ16):4S3480,883
(C5×Q16)⋊5S3 = C5×C8.6D6φ: S3/C3C2 ⊆ Out C5×Q162404(C5xQ16):5S3480,147
(C5×Q16)⋊6S3 = C5×Q16⋊S3φ: S3/C3C2 ⊆ Out C5×Q162404(C5xQ16):6S3480,797
(C5×Q16)⋊7S3 = C5×D24⋊C2φ: trivial image2404(C5xQ16):7S3480,798

Non-split extensions G=N.Q with N=C5×Q16 and Q=S3
extensionφ:Q→Out NdρLabelID
(C5×Q16).1S3 = C157Q32φ: S3/C3C2 ⊆ Out C5×Q164804-(C5xQ16).1S3480,189
(C5×Q16).2S3 = C5×C3⋊Q32φ: S3/C3C2 ⊆ Out C5×Q164804(C5xQ16).2S3480,148

׿
×
𝔽