Extensions 1→N→G→Q→1 with N=C3×Q16 and Q=C10

Direct product G=N×Q with N=C3×Q16 and Q=C10

Semidirect products G=N:Q with N=C3×Q16 and Q=C10
extensionφ:Q→Out NdρLabelID
(C3×Q16)⋊1C10 = C5×C8.6D6φ: C10/C5C2 ⊆ Out C3×Q162404(C3xQ16):1C10480,147
(C3×Q16)⋊2C10 = C5×S3×Q16φ: C10/C5C2 ⊆ Out C3×Q162404(C3xQ16):2C10480,796
(C3×Q16)⋊3C10 = C5×D24⋊C2φ: C10/C5C2 ⊆ Out C3×Q162404(C3xQ16):3C10480,798
(C3×Q16)⋊4C10 = C5×Q16⋊S3φ: C10/C5C2 ⊆ Out C3×Q162404(C3xQ16):4C10480,797
(C3×Q16)⋊5C10 = C15×SD32φ: C10/C5C2 ⊆ Out C3×Q162402(C3xQ16):5C10480,215
(C3×Q16)⋊6C10 = C15×C8.C22φ: C10/C5C2 ⊆ Out C3×Q162404(C3xQ16):6C10480,942
(C3×Q16)⋊7C10 = C15×C4○D8φ: trivial image2402(C3xQ16):7C10480,940

Non-split extensions G=N.Q with N=C3×Q16 and Q=C10
extensionφ:Q→Out NdρLabelID
(C3×Q16).1C10 = C5×C3⋊Q32φ: C10/C5C2 ⊆ Out C3×Q164804(C3xQ16).1C10480,148
(C3×Q16).2C10 = C15×Q32φ: C10/C5C2 ⊆ Out C3×Q164802(C3xQ16).2C10480,216