direct product, metacyclic, nilpotent (class 3), monomial, 2-elementary
Aliases: C3×Q16, C8.C6, C24.2C2, C6.16D4, Q8.2C6, C12.19C22, C4.3(C2×C6), C2.5(C3×D4), (C3×Q8).2C2, SmallGroup(48,27)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3×Q16
G = < a,b,c | a3=b8=1, c2=b4, ab=ba, ac=ca, cbc-1=b-1 >
Character table of C3×Q16
class | 1 | 2 | 3A | 3B | 4A | 4B | 4C | 6A | 6B | 8A | 8B | 12A | 12B | 12C | 12D | 12E | 12F | 24A | 24B | 24C | 24D | |
size | 1 | 1 | 1 | 1 | 2 | 4 | 4 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | ζ32 | ζ3 | 1 | -1 | 1 | ζ32 | ζ3 | -1 | -1 | ζ32 | ζ3 | ζ32 | ζ65 | ζ3 | ζ6 | ζ6 | ζ6 | ζ65 | ζ65 | linear of order 6 |
ρ6 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | -1 | ζ32 | ζ3 | -1 | -1 | ζ32 | ζ3 | ζ6 | ζ3 | ζ65 | ζ32 | ζ6 | ζ6 | ζ65 | ζ65 | linear of order 6 |
ρ7 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | linear of order 3 |
ρ8 | 1 | 1 | ζ3 | ζ32 | 1 | -1 | -1 | ζ3 | ζ32 | 1 | 1 | ζ3 | ζ32 | ζ65 | ζ6 | ζ6 | ζ65 | ζ3 | ζ3 | ζ32 | ζ32 | linear of order 6 |
ρ9 | 1 | 1 | ζ32 | ζ3 | 1 | -1 | -1 | ζ32 | ζ3 | 1 | 1 | ζ32 | ζ3 | ζ6 | ζ65 | ζ65 | ζ6 | ζ32 | ζ32 | ζ3 | ζ3 | linear of order 6 |
ρ10 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | -1 | ζ3 | ζ32 | -1 | -1 | ζ3 | ζ32 | ζ65 | ζ32 | ζ6 | ζ3 | ζ65 | ζ65 | ζ6 | ζ6 | linear of order 6 |
ρ11 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | linear of order 3 |
ρ12 | 1 | 1 | ζ3 | ζ32 | 1 | -1 | 1 | ζ3 | ζ32 | -1 | -1 | ζ3 | ζ32 | ζ3 | ζ6 | ζ32 | ζ65 | ζ65 | ζ65 | ζ6 | ζ6 | linear of order 6 |
ρ13 | 2 | 2 | 2 | 2 | -2 | 0 | 0 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | -2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | -√2 | √2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ15 | 2 | -2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | √2 | -√2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ16 | 2 | 2 | -1+√-3 | -1-√-3 | -2 | 0 | 0 | -1+√-3 | -1-√-3 | 0 | 0 | 1-√-3 | 1+√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3×D4 |
ρ17 | 2 | 2 | -1-√-3 | -1+√-3 | -2 | 0 | 0 | -1-√-3 | -1+√-3 | 0 | 0 | 1+√-3 | 1-√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3×D4 |
ρ18 | 2 | -2 | -1-√-3 | -1+√-3 | 0 | 0 | 0 | 1+√-3 | 1-√-3 | -√2 | √2 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ83ζ32+ζ8ζ32 | -ζ87ζ32+ζ85ζ32 | -ζ83ζ3+ζ8ζ3 | -ζ87ζ3+ζ85ζ3 | complex faithful |
ρ19 | 2 | -2 | -1+√-3 | -1-√-3 | 0 | 0 | 0 | 1-√-3 | 1+√-3 | √2 | -√2 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ87ζ3+ζ85ζ3 | -ζ83ζ3+ζ8ζ3 | -ζ87ζ32+ζ85ζ32 | -ζ83ζ32+ζ8ζ32 | complex faithful |
ρ20 | 2 | -2 | -1-√-3 | -1+√-3 | 0 | 0 | 0 | 1+√-3 | 1-√-3 | √2 | -√2 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ87ζ32+ζ85ζ32 | -ζ83ζ32+ζ8ζ32 | -ζ87ζ3+ζ85ζ3 | -ζ83ζ3+ζ8ζ3 | complex faithful |
ρ21 | 2 | -2 | -1+√-3 | -1-√-3 | 0 | 0 | 0 | 1-√-3 | 1+√-3 | -√2 | √2 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ83ζ3+ζ8ζ3 | -ζ87ζ3+ζ85ζ3 | -ζ83ζ32+ζ8ζ32 | -ζ87ζ32+ζ85ζ32 | complex faithful |
(1 34 47)(2 35 48)(3 36 41)(4 37 42)(5 38 43)(6 39 44)(7 40 45)(8 33 46)(9 19 32)(10 20 25)(11 21 26)(12 22 27)(13 23 28)(14 24 29)(15 17 30)(16 18 31)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 21 5 17)(2 20 6 24)(3 19 7 23)(4 18 8 22)(9 45 13 41)(10 44 14 48)(11 43 15 47)(12 42 16 46)(25 39 29 35)(26 38 30 34)(27 37 31 33)(28 36 32 40)
G:=sub<Sym(48)| (1,34,47)(2,35,48)(3,36,41)(4,37,42)(5,38,43)(6,39,44)(7,40,45)(8,33,46)(9,19,32)(10,20,25)(11,21,26)(12,22,27)(13,23,28)(14,24,29)(15,17,30)(16,18,31), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,21,5,17)(2,20,6,24)(3,19,7,23)(4,18,8,22)(9,45,13,41)(10,44,14,48)(11,43,15,47)(12,42,16,46)(25,39,29,35)(26,38,30,34)(27,37,31,33)(28,36,32,40)>;
G:=Group( (1,34,47)(2,35,48)(3,36,41)(4,37,42)(5,38,43)(6,39,44)(7,40,45)(8,33,46)(9,19,32)(10,20,25)(11,21,26)(12,22,27)(13,23,28)(14,24,29)(15,17,30)(16,18,31), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,21,5,17)(2,20,6,24)(3,19,7,23)(4,18,8,22)(9,45,13,41)(10,44,14,48)(11,43,15,47)(12,42,16,46)(25,39,29,35)(26,38,30,34)(27,37,31,33)(28,36,32,40) );
G=PermutationGroup([[(1,34,47),(2,35,48),(3,36,41),(4,37,42),(5,38,43),(6,39,44),(7,40,45),(8,33,46),(9,19,32),(10,20,25),(11,21,26),(12,22,27),(13,23,28),(14,24,29),(15,17,30),(16,18,31)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,21,5,17),(2,20,6,24),(3,19,7,23),(4,18,8,22),(9,45,13,41),(10,44,14,48),(11,43,15,47),(12,42,16,46),(25,39,29,35),(26,38,30,34),(27,37,31,33),(28,36,32,40)]])
C3×Q16 is a maximal subgroup of
C8.6D6 C3⋊Q32 Q16⋊S3 D24⋊C2 Q16.A4 C8.F7 Q8.2F7
C3×Q16 is a maximal quotient of C8.F7 Q8.2F7
Matrix representation of C3×Q16 ►in GL2(𝔽7) generated by
4 | 0 |
0 | 4 |
0 | 6 |
1 | 3 |
6 | 5 |
1 | 1 |
G:=sub<GL(2,GF(7))| [4,0,0,4],[0,1,6,3],[6,1,5,1] >;
C3×Q16 in GAP, Magma, Sage, TeX
C_3\times Q_{16}
% in TeX
G:=Group("C3xQ16");
// GroupNames label
G:=SmallGroup(48,27);
// by ID
G=gap.SmallGroup(48,27);
# by ID
G:=PCGroup([5,-2,-2,-3,-2,-2,120,141,126,723,368,58]);
// Polycyclic
G:=Group<a,b,c|a^3=b^8=1,c^2=b^4,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations
Export
Subgroup lattice of C3×Q16 in TeX
Character table of C3×Q16 in TeX