Extensions 1→N→G→Q→1 with N=C5×Q16 and Q=C6

Direct product G=N×Q with N=C5×Q16 and Q=C6
dρLabelID
Q16×C30480Q16xC30480,939

Semidirect products G=N:Q with N=C5×Q16 and Q=C6
extensionφ:Q→Out NdρLabelID
(C5×Q16)⋊1C6 = C3×C5⋊SD32φ: C6/C3C2 ⊆ Out C5×Q162404(C5xQ16):1C6480,106
(C5×Q16)⋊2C6 = C3×D5×Q16φ: C6/C3C2 ⊆ Out C5×Q162404(C5xQ16):2C6480,710
(C5×Q16)⋊3C6 = C3×Q8.D10φ: C6/C3C2 ⊆ Out C5×Q162404(C5xQ16):3C6480,712
(C5×Q16)⋊4C6 = C3×Q16⋊D5φ: C6/C3C2 ⊆ Out C5×Q162404(C5xQ16):4C6480,711
(C5×Q16)⋊5C6 = C15×SD32φ: C6/C3C2 ⊆ Out C5×Q162402(C5xQ16):5C6480,215
(C5×Q16)⋊6C6 = C15×C8.C22φ: C6/C3C2 ⊆ Out C5×Q162404(C5xQ16):6C6480,942
(C5×Q16)⋊7C6 = C15×C4○D8φ: trivial image2402(C5xQ16):7C6480,940

Non-split extensions G=N.Q with N=C5×Q16 and Q=C6
extensionφ:Q→Out NdρLabelID
(C5×Q16).1C6 = C3×C5⋊Q32φ: C6/C3C2 ⊆ Out C5×Q164804(C5xQ16).1C6480,107
(C5×Q16).2C6 = C15×Q32φ: C6/C3C2 ⊆ Out C5×Q164802(C5xQ16).2C6480,216

׿
×
𝔽